Cargando…

Environmental epigenetics in zebrafish

It is widely accepted that the epigenome can act as the link between environmental cues, both external and internal, to the organism and phenotype by converting the environmental stimuli to phenotypic responses through changes in gene transcription outcomes. Environmental stress endured by individua...

Descripción completa

Detalles Bibliográficos
Autores principales: Cavalieri, Vincenzo, Spinelli, Giovanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629768/
https://www.ncbi.nlm.nih.gov/pubmed/28982377
http://dx.doi.org/10.1186/s13072-017-0154-0
Descripción
Sumario:It is widely accepted that the epigenome can act as the link between environmental cues, both external and internal, to the organism and phenotype by converting the environmental stimuli to phenotypic responses through changes in gene transcription outcomes. Environmental stress endured by individual organisms can also enforce epigenetic variations in offspring that had never experienced it directly, which is termed transgenerational inheritance. To date, research in the environmental epigenetics discipline has used a wide range of both model and non-model organisms to elucidate the various epigenetic mechanisms underlying the adaptive response to environmental stimuli. In this review, we discuss the advantages of the zebrafish model for studying how environmental toxicant exposures affect the regulation of epigenetic processes, especially DNA methylation, which is the best-studied epigenetic mechanism. We include several very recent studies describing the state-of-the-art knowledge on this topic in zebrafish, together with key concepts in the function of DNA methylation during vertebrate embryogenesis.