Cargando…

Exploring Test–Retest Variability Using High-Resolution Perimetry

PURPOSE: Test–retest variability (TRV) of visual field (VF) data seriously degrades our capacity to recognize true VF progression. We conducted repeated high-resolution perimetry with a test interval of 0.5° to investigate the sources of TRV. In particular, we examined whether the spatial variance o...

Descripción completa

Detalles Bibliográficos
Autores principales: Numata, Takuya, Maddess, Ted, Matsumoto, Chota, Okuyama, Sachiko, Hashimoto, Shigeki, Nomoto, Hiroki, Shimomura, Yoshikazu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629923/
https://www.ncbi.nlm.nih.gov/pubmed/29046828
http://dx.doi.org/10.1167/tvst.6.5.8
_version_ 1783269146938572800
author Numata, Takuya
Maddess, Ted
Matsumoto, Chota
Okuyama, Sachiko
Hashimoto, Shigeki
Nomoto, Hiroki
Shimomura, Yoshikazu
author_facet Numata, Takuya
Maddess, Ted
Matsumoto, Chota
Okuyama, Sachiko
Hashimoto, Shigeki
Nomoto, Hiroki
Shimomura, Yoshikazu
author_sort Numata, Takuya
collection PubMed
description PURPOSE: Test–retest variability (TRV) of visual field (VF) data seriously degrades our capacity to recognize true VF progression. We conducted repeated high-resolution perimetry with a test interval of 0.5° to investigate the sources of TRV. In particular, we examined whether the spatial variance of the observed sensitivity changes or if their absolute magnitude was of more importance. METHODS: Sixteen eyes of 16 glaucoma patients were each tested three times at 61 VF locations along the superior-temporal 45° meridian using a modified protocol of the Octopus 900 perimeter. TRV was quantified as the standard deviation of the repeats at each point (retest-SD). We also computed the mean sensitivity at each point (retest-MS) and the running spatial-SD along the tested meridian. Multiple regression models investigated whether any of those variables (and also age, sex, and VF eccentricity) were significant independent determinants of TRV. RESULTS: The main independent determinants of TRV were the retest-MS at −0.04 dB TRV/dB loss (P < 0.0001, t-statistic 5.05), and the retest-SD at 0.47 dB spatial variance/dB loss (P < 0.0001, t-statistic 12.5). CONCLUSIONS: The larger effect for the spatial-SD suggested that it was perhaps a stronger determinant of TRV than scotoma depth per se. This might support the hypothesis that interactions between small perimetric stimuli, rapidly varying sensitivity across the field, and normal fixational jitter are strong determinants of TRV. TRANSLATIONAL RELEVANCE: Our study indicates that methods that might reduce the effects of jagged sensitivity changes, such as increasing stimulus size or better gaze tracking, could reduce TRV.
format Online
Article
Text
id pubmed-5629923
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-56299232017-10-18 Exploring Test–Retest Variability Using High-Resolution Perimetry Numata, Takuya Maddess, Ted Matsumoto, Chota Okuyama, Sachiko Hashimoto, Shigeki Nomoto, Hiroki Shimomura, Yoshikazu Transl Vis Sci Technol Articles PURPOSE: Test–retest variability (TRV) of visual field (VF) data seriously degrades our capacity to recognize true VF progression. We conducted repeated high-resolution perimetry with a test interval of 0.5° to investigate the sources of TRV. In particular, we examined whether the spatial variance of the observed sensitivity changes or if their absolute magnitude was of more importance. METHODS: Sixteen eyes of 16 glaucoma patients were each tested three times at 61 VF locations along the superior-temporal 45° meridian using a modified protocol of the Octopus 900 perimeter. TRV was quantified as the standard deviation of the repeats at each point (retest-SD). We also computed the mean sensitivity at each point (retest-MS) and the running spatial-SD along the tested meridian. Multiple regression models investigated whether any of those variables (and also age, sex, and VF eccentricity) were significant independent determinants of TRV. RESULTS: The main independent determinants of TRV were the retest-MS at −0.04 dB TRV/dB loss (P < 0.0001, t-statistic 5.05), and the retest-SD at 0.47 dB spatial variance/dB loss (P < 0.0001, t-statistic 12.5). CONCLUSIONS: The larger effect for the spatial-SD suggested that it was perhaps a stronger determinant of TRV than scotoma depth per se. This might support the hypothesis that interactions between small perimetric stimuli, rapidly varying sensitivity across the field, and normal fixational jitter are strong determinants of TRV. TRANSLATIONAL RELEVANCE: Our study indicates that methods that might reduce the effects of jagged sensitivity changes, such as increasing stimulus size or better gaze tracking, could reduce TRV. The Association for Research in Vision and Ophthalmology 2017-10-04 /pmc/articles/PMC5629923/ /pubmed/29046828 http://dx.doi.org/10.1167/tvst.6.5.8 Text en Copyright 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Articles
Numata, Takuya
Maddess, Ted
Matsumoto, Chota
Okuyama, Sachiko
Hashimoto, Shigeki
Nomoto, Hiroki
Shimomura, Yoshikazu
Exploring Test–Retest Variability Using High-Resolution Perimetry
title Exploring Test–Retest Variability Using High-Resolution Perimetry
title_full Exploring Test–Retest Variability Using High-Resolution Perimetry
title_fullStr Exploring Test–Retest Variability Using High-Resolution Perimetry
title_full_unstemmed Exploring Test–Retest Variability Using High-Resolution Perimetry
title_short Exploring Test–Retest Variability Using High-Resolution Perimetry
title_sort exploring test–retest variability using high-resolution perimetry
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629923/
https://www.ncbi.nlm.nih.gov/pubmed/29046828
http://dx.doi.org/10.1167/tvst.6.5.8
work_keys_str_mv AT numatatakuya exploringtestretestvariabilityusinghighresolutionperimetry
AT maddessted exploringtestretestvariabilityusinghighresolutionperimetry
AT matsumotochota exploringtestretestvariabilityusinghighresolutionperimetry
AT okuyamasachiko exploringtestretestvariabilityusinghighresolutionperimetry
AT hashimotoshigeki exploringtestretestvariabilityusinghighresolutionperimetry
AT nomotohiroki exploringtestretestvariabilityusinghighresolutionperimetry
AT shimomurayoshikazu exploringtestretestvariabilityusinghighresolutionperimetry