Cargando…

A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery

Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-wei...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yan, Stojadinovic, Strahinja, Hrycushko, Brian, Wardak, Zabi, Lau, Steven, Lu, Weiguo, Yan, Yulong, Jiang, Steve B., Zhen, Xin, Timmerman, Robert, Nedzi, Lucien, Gu, Xuejun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630188/
https://www.ncbi.nlm.nih.gov/pubmed/28985229
http://dx.doi.org/10.1371/journal.pone.0185844
Descripción
Sumario:Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.