Cargando…

A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery

Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-wei...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yan, Stojadinovic, Strahinja, Hrycushko, Brian, Wardak, Zabi, Lau, Steven, Lu, Weiguo, Yan, Yulong, Jiang, Steve B., Zhen, Xin, Timmerman, Robert, Nedzi, Lucien, Gu, Xuejun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630188/
https://www.ncbi.nlm.nih.gov/pubmed/28985229
http://dx.doi.org/10.1371/journal.pone.0185844
_version_ 1783269177894633472
author Liu, Yan
Stojadinovic, Strahinja
Hrycushko, Brian
Wardak, Zabi
Lau, Steven
Lu, Weiguo
Yan, Yulong
Jiang, Steve B.
Zhen, Xin
Timmerman, Robert
Nedzi, Lucien
Gu, Xuejun
author_facet Liu, Yan
Stojadinovic, Strahinja
Hrycushko, Brian
Wardak, Zabi
Lau, Steven
Lu, Weiguo
Yan, Yulong
Jiang, Steve B.
Zhen, Xin
Timmerman, Robert
Nedzi, Lucien
Gu, Xuejun
author_sort Liu, Yan
collection PubMed
description Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.
format Online
Article
Text
id pubmed-5630188
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-56301882017-10-20 A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery Liu, Yan Stojadinovic, Strahinja Hrycushko, Brian Wardak, Zabi Lau, Steven Lu, Weiguo Yan, Yulong Jiang, Steve B. Zhen, Xin Timmerman, Robert Nedzi, Lucien Gu, Xuejun PLoS One Research Article Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases. Public Library of Science 2017-10-06 /pmc/articles/PMC5630188/ /pubmed/28985229 http://dx.doi.org/10.1371/journal.pone.0185844 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Liu, Yan
Stojadinovic, Strahinja
Hrycushko, Brian
Wardak, Zabi
Lau, Steven
Lu, Weiguo
Yan, Yulong
Jiang, Steve B.
Zhen, Xin
Timmerman, Robert
Nedzi, Lucien
Gu, Xuejun
A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery
title A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery
title_full A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery
title_fullStr A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery
title_full_unstemmed A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery
title_short A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery
title_sort deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630188/
https://www.ncbi.nlm.nih.gov/pubmed/28985229
http://dx.doi.org/10.1371/journal.pone.0185844
work_keys_str_mv AT liuyan adeepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT stojadinovicstrahinja adeepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT hrycushkobrian adeepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT wardakzabi adeepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT lausteven adeepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT luweiguo adeepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT yanyulong adeepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT jiangsteveb adeepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT zhenxin adeepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT timmermanrobert adeepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT nedzilucien adeepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT guxuejun adeepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT liuyan deepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT stojadinovicstrahinja deepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT hrycushkobrian deepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT wardakzabi deepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT lausteven deepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT luweiguo deepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT yanyulong deepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT jiangsteveb deepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT zhenxin deepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT timmermanrobert deepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT nedzilucien deepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery
AT guxuejun deepconvolutionalneuralnetworkbasedautomaticdelineationstrategyformultiplebrainmetastasesstereotacticradiosurgery