Cargando…
Topological bootstrap: Fractionalization from Kondo coupling
Topologically ordered phases of matter can host fractionalized excitations known as “anyons,” which obey neither Bose nor Fermi statistics. Despite forming the basis for topological quantum computation, experimental access to these exotic phases has been very limited. We present a new route toward r...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630238/ https://www.ncbi.nlm.nih.gov/pubmed/28989961 http://dx.doi.org/10.1126/sciadv.1700729 |
Sumario: | Topologically ordered phases of matter can host fractionalized excitations known as “anyons,” which obey neither Bose nor Fermi statistics. Despite forming the basis for topological quantum computation, experimental access to these exotic phases has been very limited. We present a new route toward realizing fractionalized topological phases by literally building on unfractionalized phases, which are much more easily realized experimentally. Our approach involves a Kondo lattice model in which a gapped electronic system of noninteracting fermions is coupled to local moments via the exchange interaction. Using general entanglement-based arguments and explicit lattice models, we show that gapped spin liquids can be induced in the spin system, and we demonstrate the power of this “topological bootstrap” by realizing chiral and Z(2) spin liquids. This technique enables the realization of many long sought-after fractionalized phases of matter. |
---|