Cargando…

Oxymatrine suppresses the growth and invasion of MG63 cells by up-regulating PTEN and promoting its nuclear translocation

Studies demonstrated that reduced PTEN levels are associated with poor prognoses of osteosarcoma. The nuclear localization of PTEN is important for its tumor suppressive function. Equally importantly, PTEN is the most significant negative regulator of PI3K/Akt signaling cascade, the constitutively a...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Ming, Jiang, Linlin, Li, Bin, Wang, Guangbin, Wang, Jiashi, Fu, Yonghui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630315/
https://www.ncbi.nlm.nih.gov/pubmed/29029415
http://dx.doi.org/10.18632/oncotarget.17783
Descripción
Sumario:Studies demonstrated that reduced PTEN levels are associated with poor prognoses of osteosarcoma. The nuclear localization of PTEN is important for its tumor suppressive function. Equally importantly, PTEN is the most significant negative regulator of PI3K/Akt signaling cascade, the constitutively activated pathway in osteosarcoma. In our study MG63 cells and U2OS cells were treated with the indicated concentrations of oxymatrine, in order to find the inhibition of oxymatrine to cells. We found the functions of oxymatrine on proliferation, apoptosis and invasion in cells. Oxymatrine could increase the expression of PTEN and promote its nuclear translocation in MG63 cells. In addition, oxymatrine could induce cell cycle arrest in G1 phase and apoptosis of MG63 cells. The migration and invasion potential of MG63 cells were also markedly inhibited by oxymatrine. Oxymatrine could suppress the growth and invasion of MG63 human osteosarcoma cells by up-regulating PTEN and promoting its nuclear translocation and inhibiting PI3K/Akt signaling pathway.