Cargando…
Bagging Nearest-Neighbor Prediction independence Test: an efficient method for nonlinear dependence of two continuous variables
Testing dependence/correlation of two variables is one of the fundamental tasks in statistics. In this work, we proposed an efficient method for nonlinear dependence of two continuous variables (X and Y). We addressed this research question by using BNNPT (Bagging Nearest-Neighbor Prediction indepen...
Autores principales: | Wang, Yi, Li, Yi, Liu, Xiaoyu, Pu, Weilin, Wang, Xiaofeng, Wang, Jiucun, Xiong, Momiao, Yao Shugart, Yin, Jin, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630623/ https://www.ncbi.nlm.nih.gov/pubmed/28986523 http://dx.doi.org/10.1038/s41598-017-12783-9 |
Ejemplares similares
-
Efficient test for nonlinear dependence of two continuous variables
por: Wang, Yi, et al.
Publicado: (2015) -
knnAUC: an open-source R package for detecting nonlinear dependence between one continuous variable and one binary variable
por: Li, Yi, et al.
Publicado: (2018) -
Lectures on the nearest neighbor method
por: Biau, Gérard, et al.
Publicado: (2015) -
Robust Reference Powered Association Test of Genome-Wide Association Studies
por: Wang, Yi, et al.
Publicado: (2019) -
Random Bits Forest: a Strong Classifier/Regressor for Big Data
por: Wang, Yi, et al.
Publicado: (2016)