Cargando…

Combined Bacterial Identification and Antimicrobial Susceptibility Testing Directly from Whole Blood

BACKGROUND: Timely identification of a causative pathogen and its antimicrobial susceptibility profile is important for effective therapy. This is especially true in the case of bloodstream infections caused by the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetoba...

Descripción completa

Detalles Bibliográficos
Autores principales: Andini, Nadya, Hu, Anne, Yang, Samuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5631507/
http://dx.doi.org/10.1093/ofid/ofx163.1566
_version_ 1783269490239209472
author Andini, Nadya
Hu, Anne
Yang, Samuel
author_facet Andini, Nadya
Hu, Anne
Yang, Samuel
author_sort Andini, Nadya
collection PubMed
description BACKGROUND: Timely identification of a causative pathogen and its antimicrobial susceptibility profile is important for effective therapy. This is especially true in the case of bloodstream infections caused by the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae) pathogens where inappropriate antibiotic prescription often leads to higher mortality and increased selection for multi-drug resistant strains. However, current standard protocols for pathogen identification (ID) and antimicrobial susceptibility testing (AST) take days to complete and despite the advancement of molecular diagnostics, none can concurrently provide reliable ID and AST information. METHODS: We developed a method of direct ID and AST of ESKAPE pathogens using real-time PCR-HRM (high resolution melt) as the end-point analysis coupled with whole blood sample preparation. Our assay utilizes blood cell lysis, removal of background human DNA and protein, pathogen enrichment, antibiotic exposure, and broad-range PCR-HRM analysis targeting bacterial internal transcribed spacer region to determine ID and AST in less than 10 hours. We then assessed antimicrobial
susceptibility/resistance by calculating the difference in threshold cycle compared with untreated sample (ΔCt), and determined species identity by its melt curve using an automated computer algorithm against a reference curve database of 89 bacterial species. RESULTS: Our assay was able to reach a limit of detection of 10 CFU/mL for all tested ESKAPE organisms except for E. faecium (100 CFU/mL). Using a final concentration of 100 CFU/mL and a calculated ΔCt cutoff value of 1.5, we observed significant ΔCt changes with antibiotic treatment and established minimum inhibitory concentrations (MICs) for each strain. Comparison of the observed values to reference MICs showed overall similar results. Furthermore, our automated machine-learning based computer algorithm was able to correctly identify each organism based on its melt curve. CONCLUSION: Our results suggest that reliable rapid bacterial ID and AST information can be simultaneously obtained directly from whole blood using our combined ID-AST assay. DISCLOSURES: All authors: No reported disclosures.
format Online
Article
Text
id pubmed-5631507
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-56315072017-11-07 Combined Bacterial Identification and Antimicrobial Susceptibility Testing Directly from Whole Blood Andini, Nadya Hu, Anne Yang, Samuel Open Forum Infect Dis Abstracts BACKGROUND: Timely identification of a causative pathogen and its antimicrobial susceptibility profile is important for effective therapy. This is especially true in the case of bloodstream infections caused by the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae) pathogens where inappropriate antibiotic prescription often leads to higher mortality and increased selection for multi-drug resistant strains. However, current standard protocols for pathogen identification (ID) and antimicrobial susceptibility testing (AST) take days to complete and despite the advancement of molecular diagnostics, none can concurrently provide reliable ID and AST information. METHODS: We developed a method of direct ID and AST of ESKAPE pathogens using real-time PCR-HRM (high resolution melt) as the end-point analysis coupled with whole blood sample preparation. Our assay utilizes blood cell lysis, removal of background human DNA and protein, pathogen enrichment, antibiotic exposure, and broad-range PCR-HRM analysis targeting bacterial internal transcribed spacer region to determine ID and AST in less than 10 hours. We then assessed antimicrobial
susceptibility/resistance by calculating the difference in threshold cycle compared with untreated sample (ΔCt), and determined species identity by its melt curve using an automated computer algorithm against a reference curve database of 89 bacterial species. RESULTS: Our assay was able to reach a limit of detection of 10 CFU/mL for all tested ESKAPE organisms except for E. faecium (100 CFU/mL). Using a final concentration of 100 CFU/mL and a calculated ΔCt cutoff value of 1.5, we observed significant ΔCt changes with antibiotic treatment and established minimum inhibitory concentrations (MICs) for each strain. Comparison of the observed values to reference MICs showed overall similar results. Furthermore, our automated machine-learning based computer algorithm was able to correctly identify each organism based on its melt curve. CONCLUSION: Our results suggest that reliable rapid bacterial ID and AST information can be simultaneously obtained directly from whole blood using our combined ID-AST assay. DISCLOSURES: All authors: No reported disclosures. Oxford University Press 2017-10-04 /pmc/articles/PMC5631507/ http://dx.doi.org/10.1093/ofid/ofx163.1566 Text en © The Author 2017. Published by Oxford University Press on behalf of Infectious Diseases Society of America. http://creativecommons.org/licenses/by-nc-nd/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Abstracts
Andini, Nadya
Hu, Anne
Yang, Samuel
Combined Bacterial Identification and Antimicrobial Susceptibility Testing Directly from Whole Blood
title Combined Bacterial Identification and Antimicrobial Susceptibility Testing Directly from Whole Blood
title_full Combined Bacterial Identification and Antimicrobial Susceptibility Testing Directly from Whole Blood
title_fullStr Combined Bacterial Identification and Antimicrobial Susceptibility Testing Directly from Whole Blood
title_full_unstemmed Combined Bacterial Identification and Antimicrobial Susceptibility Testing Directly from Whole Blood
title_short Combined Bacterial Identification and Antimicrobial Susceptibility Testing Directly from Whole Blood
title_sort combined bacterial identification and antimicrobial susceptibility testing directly from whole blood
topic Abstracts
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5631507/
http://dx.doi.org/10.1093/ofid/ofx163.1566
work_keys_str_mv AT andininadya combinedbacterialidentificationandantimicrobialsusceptibilitytestingdirectlyfromwholeblood
AT huanne combinedbacterialidentificationandantimicrobialsusceptibilitytestingdirectlyfromwholeblood
AT yangsamuel combinedbacterialidentificationandantimicrobialsusceptibilitytestingdirectlyfromwholeblood