Cargando…

Improving Prediction Accuracy of “Central Line-Associated Blood Stream Infections” Using Data Mining Models

Prediction of nosocomial infections among patients is an important part of clinical surveillance programs to enable the related personnel to take preventive actions in advance. Designing a clinical surveillance program with capability of predicting nosocomial infections is a challenging task due to...

Descripción completa

Detalles Bibliográficos
Autores principales: Noaman, Amin Y., Nadeem, Farrukh, Ragab, Abdul Hamid M., Jamjoom, Arwa, Al-Abdullah, Nabeela, Nasir, Mahreen, Ali, Anser G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632447/
https://www.ncbi.nlm.nih.gov/pubmed/29085836
http://dx.doi.org/10.1155/2017/3292849
Descripción
Sumario:Prediction of nosocomial infections among patients is an important part of clinical surveillance programs to enable the related personnel to take preventive actions in advance. Designing a clinical surveillance program with capability of predicting nosocomial infections is a challenging task due to several reasons, including high dimensionality of medical data, heterogenous data representation, and special knowledge required to extract patterns for prediction. In this paper, we present details of six data mining methods implemented using cross industry standard process for data mining to predict central line-associated blood stream infections. For our study, we selected datasets of healthcare-associated infections from US National Healthcare Safety Network and consumer survey data from Hospital Consumer Assessment of Healthcare Providers and Systems. Our experiments show that central line-associated blood stream infections (CLABSIs) can be successfully predicted using AdaBoost method with an accuracy up to 89.7%. This will help in implementing effective clinical surveillance programs for infection control, as well as improving the accuracy detection of CLABSIs. Also, this reduces patients' hospital stay cost and maintains patients' safety.