Cargando…

Engineering microdent structures of bone implant surfaces to enhance osteogenic activity in MSCs

Problems persist with the integration of hip and dental implants with host bone tissues, which may result in long-term implant failure. Previous studies have found that implants bearing irregular surfaces can facilitate osseointegration. An improvement to this approach would use implant surfaces har...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Sophia, Chow, Thomas, Chu, Julia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632706/
https://www.ncbi.nlm.nih.gov/pubmed/29114582
http://dx.doi.org/10.1016/j.bbrep.2016.11.016
Descripción
Sumario:Problems persist with the integration of hip and dental implants with host bone tissues, which may result in long-term implant failure. Previous studies have found that implants bearing irregular surfaces can facilitate osseointegration. An improvement to this approach would use implant surfaces harboring a well-defined surface microstructure to decrease variability in implant surfaces. In this study, we tested whether well-defined surfaces with arrays of microdents (each with depth approximately 3 µm) significantly affected the morphology, proliferation, and osteogenic activity of mesenchymal stem cells (MSCs). Arrays of microdents tested had diameters of 9 µm, 12 µm, and 18 µm, while spacing between arrays ranged from 8 µm to 34 µm. Effects on MSC morphology (cell spreading area) and proliferation were also quantified, with both significantly decreasing on micropatterned surfaces (p<0.05) on smaller and denser microdents. In contrast, MSCs were found to deposit more calcified matrix on smaller and denser arrays of microdents. MSCs on a pattern with arrays of microdents with a diameter of 9 µm and a spacing 8 µm deposited 3–4 times more calcified matrix than on a smooth surface (p<0.05). These findings show that well-defined surface microtopographies promote osteogenic activity, which can be used on implant surfaces to improve integration with the host bone tissue.