Cargando…

Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle

[Image: see text] We used single-molecule fluorescence microscopy to study self-diffusion of a feedstock-like probe molecule with nanometer accuracy in the macropores of a micrometer-sized, real-life fluid catalytic cracking (FCC) particle. Movies of single fluorescent molecules allowed their moveme...

Descripción completa

Detalles Bibliográficos
Autores principales: Hendriks, Frank C., Meirer, Florian, Kubarev, Alexey V., Ristanović, Zoran, Roeffaers, Maarten B. J., Vogt, Eelco T. C., Bruijnincx, Pieter C. A., Weckhuysen, Bert M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632810/
https://www.ncbi.nlm.nih.gov/pubmed/28902508
http://dx.doi.org/10.1021/jacs.7b07139
_version_ 1783269771316297728
author Hendriks, Frank C.
Meirer, Florian
Kubarev, Alexey V.
Ristanović, Zoran
Roeffaers, Maarten B. J.
Vogt, Eelco T. C.
Bruijnincx, Pieter C. A.
Weckhuysen, Bert M.
author_facet Hendriks, Frank C.
Meirer, Florian
Kubarev, Alexey V.
Ristanović, Zoran
Roeffaers, Maarten B. J.
Vogt, Eelco T. C.
Bruijnincx, Pieter C. A.
Weckhuysen, Bert M.
author_sort Hendriks, Frank C.
collection PubMed
description [Image: see text] We used single-molecule fluorescence microscopy to study self-diffusion of a feedstock-like probe molecule with nanometer accuracy in the macropores of a micrometer-sized, real-life fluid catalytic cracking (FCC) particle. Movies of single fluorescent molecules allowed their movement through the pore network to be reconstructed. The observed tracks were classified into three different states by machine learning and all found to be distributed homogeneously over the particle. Most probe molecules (88%) were immobile, with the molecule most likely being physisorbed or trapped; the remainder was either mobile (8%), with the molecule moving inside the macropores, or showed hybrid behavior (4%). Mobile tracks had an average diffusion coefficient of D = 8 × 10(–14) ± 1 × 10(–13) m(2) s(–1), with the standard deviation thought to be related to the large range of pore sizes found in FCC particles. The developed methodology can be used to evaluate, quantify and map heterogeneities in diffusional properties within complex hierarchically porous materials.
format Online
Article
Text
id pubmed-5632810
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-56328102017-10-10 Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle Hendriks, Frank C. Meirer, Florian Kubarev, Alexey V. Ristanović, Zoran Roeffaers, Maarten B. J. Vogt, Eelco T. C. Bruijnincx, Pieter C. A. Weckhuysen, Bert M. J Am Chem Soc [Image: see text] We used single-molecule fluorescence microscopy to study self-diffusion of a feedstock-like probe molecule with nanometer accuracy in the macropores of a micrometer-sized, real-life fluid catalytic cracking (FCC) particle. Movies of single fluorescent molecules allowed their movement through the pore network to be reconstructed. The observed tracks were classified into three different states by machine learning and all found to be distributed homogeneously over the particle. Most probe molecules (88%) were immobile, with the molecule most likely being physisorbed or trapped; the remainder was either mobile (8%), with the molecule moving inside the macropores, or showed hybrid behavior (4%). Mobile tracks had an average diffusion coefficient of D = 8 × 10(–14) ± 1 × 10(–13) m(2) s(–1), with the standard deviation thought to be related to the large range of pore sizes found in FCC particles. The developed methodology can be used to evaluate, quantify and map heterogeneities in diffusional properties within complex hierarchically porous materials. American Chemical Society 2017-09-13 2017-10-04 /pmc/articles/PMC5632810/ /pubmed/28902508 http://dx.doi.org/10.1021/jacs.7b07139 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Hendriks, Frank C.
Meirer, Florian
Kubarev, Alexey V.
Ristanović, Zoran
Roeffaers, Maarten B. J.
Vogt, Eelco T. C.
Bruijnincx, Pieter C. A.
Weckhuysen, Bert M.
Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle
title Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle
title_full Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle
title_fullStr Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle
title_full_unstemmed Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle
title_short Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle
title_sort single-molecule fluorescence microscopy reveals local diffusion coefficients in the pore network of an individual catalyst particle
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632810/
https://www.ncbi.nlm.nih.gov/pubmed/28902508
http://dx.doi.org/10.1021/jacs.7b07139
work_keys_str_mv AT hendriksfrankc singlemoleculefluorescencemicroscopyrevealslocaldiffusioncoefficientsintheporenetworkofanindividualcatalystparticle
AT meirerflorian singlemoleculefluorescencemicroscopyrevealslocaldiffusioncoefficientsintheporenetworkofanindividualcatalystparticle
AT kubarevalexeyv singlemoleculefluorescencemicroscopyrevealslocaldiffusioncoefficientsintheporenetworkofanindividualcatalystparticle
AT ristanoviczoran singlemoleculefluorescencemicroscopyrevealslocaldiffusioncoefficientsintheporenetworkofanindividualcatalystparticle
AT roeffaersmaartenbj singlemoleculefluorescencemicroscopyrevealslocaldiffusioncoefficientsintheporenetworkofanindividualcatalystparticle
AT vogteelcotc singlemoleculefluorescencemicroscopyrevealslocaldiffusioncoefficientsintheporenetworkofanindividualcatalystparticle
AT bruijnincxpieterca singlemoleculefluorescencemicroscopyrevealslocaldiffusioncoefficientsintheporenetworkofanindividualcatalystparticle
AT weckhuysenbertm singlemoleculefluorescencemicroscopyrevealslocaldiffusioncoefficientsintheporenetworkofanindividualcatalystparticle