Cargando…
Solar-Driven Thermochemical Splitting of CO(2) and In Situ Separation of CO and O(2) across a Ceria Redox Membrane Reactor
Splitting CO(2) with a thermochemical redox cycle utilizes the entire solar spectrum and provides a favorable path to the synthesis of solar fuels at high rates and efficiencies. However, the temperature/pressure swing commonly applied between reduction and oxidation steps incurs irreversible energy...
Autores principales: | Tou, Maria, Michalsky, Ronald, Steinfeld, Aldo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632959/ https://www.ncbi.nlm.nih.gov/pubmed/29034368 http://dx.doi.org/10.1016/j.joule.2017.07.015 |
Ejemplares similares
-
Design principles of perovskites for solar-driven thermochemical splitting of CO(2)
por: Ezbiri, Miriam, et al.
Publicado: (2017) -
Experimental Demonstration of the Thermochemical Reduction
of Ceria in a Solar Aerosol Reactor
por: Welte, Michael, et al.
Publicado: (2016) -
Splitting CO(2) with a ceria‐based redox cycle in a solar‐driven thermogravimetric analyzer
por: Takacs, M., et al.
Publicado: (2016) -
Review of the Two-Step H(2)O/CO(2)-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions
por: Loutzenhiser, Peter G., et al.
Publicado: (2010) -
Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation
por: Haussener, Sophia, et al.
Publicado: (2012)