Cargando…

Proximal-gradient algorithms for fractional programming

In this paper, we propose two proximal-gradient algorithms for fractional programming problems in real Hilbert spaces, where the numerator is a proper, convex and lower semicontinuous function and the denominator is a smooth function, either concave or convex. In the iterative schemes, we perform a...

Descripción completa

Detalles Bibliográficos
Autores principales: Boţ, Radu Ioan, Csetnek, Ernö Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632963/
https://www.ncbi.nlm.nih.gov/pubmed/33116346
http://dx.doi.org/10.1080/02331934.2017.1294592
_version_ 1783269801483829248
author Boţ, Radu Ioan
Csetnek, Ernö Robert
author_facet Boţ, Radu Ioan
Csetnek, Ernö Robert
author_sort Boţ, Radu Ioan
collection PubMed
description In this paper, we propose two proximal-gradient algorithms for fractional programming problems in real Hilbert spaces, where the numerator is a proper, convex and lower semicontinuous function and the denominator is a smooth function, either concave or convex. In the iterative schemes, we perform a proximal step with respect to the nonsmooth numerator and a gradient step with respect to the smooth denominator. The algorithm in case of a concave denominator has the particularity that it generates sequences which approach both the (global) optimal solutions set and the optimal objective value of the underlying fractional programming problem. In case of a convex denominator the numerical scheme approaches the set of critical points of the objective function, provided the latter satisfies the Kurdyka-ᴌojasiewicz property.
format Online
Article
Text
id pubmed-5632963
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-56329632020-10-26 Proximal-gradient algorithms for fractional programming Boţ, Radu Ioan Csetnek, Ernö Robert Optimization Articles In this paper, we propose two proximal-gradient algorithms for fractional programming problems in real Hilbert spaces, where the numerator is a proper, convex and lower semicontinuous function and the denominator is a smooth function, either concave or convex. In the iterative schemes, we perform a proximal step with respect to the nonsmooth numerator and a gradient step with respect to the smooth denominator. The algorithm in case of a concave denominator has the particularity that it generates sequences which approach both the (global) optimal solutions set and the optimal objective value of the underlying fractional programming problem. In case of a convex denominator the numerical scheme approaches the set of critical points of the objective function, provided the latter satisfies the Kurdyka-ᴌojasiewicz property. Taylor & Francis 2017-08-03 2017-02-24 /pmc/articles/PMC5632963/ /pubmed/33116346 http://dx.doi.org/10.1080/02331934.2017.1294592 Text en © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Boţ, Radu Ioan
Csetnek, Ernö Robert
Proximal-gradient algorithms for fractional programming
title Proximal-gradient algorithms for fractional programming
title_full Proximal-gradient algorithms for fractional programming
title_fullStr Proximal-gradient algorithms for fractional programming
title_full_unstemmed Proximal-gradient algorithms for fractional programming
title_short Proximal-gradient algorithms for fractional programming
title_sort proximal-gradient algorithms for fractional programming
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632963/
https://www.ncbi.nlm.nih.gov/pubmed/33116346
http://dx.doi.org/10.1080/02331934.2017.1294592
work_keys_str_mv AT botraduioan proximalgradientalgorithmsforfractionalprogramming
AT csetnekernorobert proximalgradientalgorithmsforfractionalprogramming