Cargando…
Spectral stability of periodic waves in the generalized reduced Ostrovsky equation
We consider stability of periodic travelling waves in the generalized reduced Ostrovsky equation with respect to co-periodic perturbations. Compared to the recent literature, we give a simple argument that proves spectral stability of all smooth periodic travelling waves independent of the nonlinear...
Autores principales: | Geyer, Anna, Pelinovsky, Dmitry E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633004/ https://www.ncbi.nlm.nih.gov/pubmed/29070918 http://dx.doi.org/10.1007/s11005-017-0941-3 |
Ejemplares similares
-
The Marchenko-Ostrovski mapping and the trace formula for the Camassa-Holm equation
por: Badanin, A, et al.
Publicado: (2002) -
Localization in Periodic Potentials: From Schrödinger Operators to the Gross-Pitaevskii Equation
por: Pelinovsky, Dmitry E
Publicado: (2011) -
Nonlinear physical systems: spectral analysis, stability and bifurcations
por: Kirillov, Oleg N, et al.
Publicado: (2013) -
On the wave length of smooth periodic traveling waves of the Camassa–Holm equation()
por: Geyer, A., et al.
Publicado: (2015) -
Nonlinear dispersive equations: existence and stability of solitary and periodic travelling wave solutions
por: Pava, Jaime Angulo
Publicado: (2014)