Cargando…
A novel function of N-linked glycoproteins, alpha-2-HS-glycoprotein and hemopexin: Implications for small molecule compound-mediated neuroprotection
Therapeutic agents to the central nervous system (CNS) need to be efficiently delivered to the target site of action at appropriate therapeutic levels. However, a limited number of effective drugs for the treatment of neurological diseases has been developed thus far. Further, the pharmacological me...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633190/ https://www.ncbi.nlm.nih.gov/pubmed/29016670 http://dx.doi.org/10.1371/journal.pone.0186227 |
Sumario: | Therapeutic agents to the central nervous system (CNS) need to be efficiently delivered to the target site of action at appropriate therapeutic levels. However, a limited number of effective drugs for the treatment of neurological diseases has been developed thus far. Further, the pharmacological mechanisms by which such therapeutic agents can protect neurons from cell death have not been fully understood. We have previously reported the novel small-molecule compound, 2-[mesityl(methyl)amino]-N-[4-(pyridin-2-yl)-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316), as a unique neuroprotectant against oxidative injury and a highly promising remedy for the treatment of amyotrophic lateral sclerosis (ALS). One of the remarkable characteristics of WN1316 is that its efficacious doses in ALS mouse models are much less than those against oxidative injury in cultured human neuronal cells. It is also noted that the WN1316 cytoprotective activity observed in cultured cells is totally dependent upon the addition of fetal bovine serum in culture medium. These findings led us to postulate some serum factors being tightly linked to the WN1316 efficacy. In this study, we sieved through fetal bovine serum proteins and identified two N-linked glycoproteins, alpha-2-HS-glycoprotein (AHSG) and hemopexin (HPX), requisites to exert the WN1316 cytoprotective activity against oxidative injury in neuronal cells in vitro. Notably, the removal of glycan chains from these molecules did not affect the WN1316 cytoprotective activity. Thus, two glycoproteins, AHSG and HPX, represent a pivotal glycoprotein of the cytoprotective activity for WN1316, showing a concrete evidence for the novel glycan-independent function of serum glycoproteins in neuroprotective drug efficacy. |
---|