Cargando…
Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome‐wide association study using high‐density SNPs
Gossypium hirsutum L. represents the largest source of textile fibre, and China is one of the largest cotton‐producing and cotton‐consuming countries in the world. To investigate the genetic architecture of the agronomic traits of upland cotton in China, a diverse and nationwide population containin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633765/ https://www.ncbi.nlm.nih.gov/pubmed/28301713 http://dx.doi.org/10.1111/pbi.12722 |
_version_ | 1783269954816049152 |
---|---|
author | Huang, Cong Nie, Xinhui Shen, Chao You, Chunyuan Li, Wu Zhao, Wenxia Zhang, Xianlong Lin, Zhongxu |
author_facet | Huang, Cong Nie, Xinhui Shen, Chao You, Chunyuan Li, Wu Zhao, Wenxia Zhang, Xianlong Lin, Zhongxu |
author_sort | Huang, Cong |
collection | PubMed |
description | Gossypium hirsutum L. represents the largest source of textile fibre, and China is one of the largest cotton‐producing and cotton‐consuming countries in the world. To investigate the genetic architecture of the agronomic traits of upland cotton in China, a diverse and nationwide population containing 503 G. hirsutum accessions was collected for a genome‐wide association study (GWAS) on 16 agronomic traits. The accessions were planted in four places from 2012 to 2013 for phenotyping. The CottonSNP63K array and a published high‐density map based on this array were used for genotyping. The 503 G. hirsutum accessions were divided into three subpopulations based on 11 975 quantified polymorphic single‐nucleotide polymorphisms (SNPs). By comparing the genetic structure and phenotypic variation among three genetic subpopulations, seven geographic distributions and four breeding periods, we found that geographic distribution and breeding period were not the determinants of genetic structure. In addition, no obvious phenotypic differentiations were found among the three subpopulations, even though they had different genetic backgrounds. A total of 324 SNPs and 160 candidate quantitative trait loci (QTL) regions were identified as significantly associated with the 16 agronomic traits. A network was established for multieffects in QTLs and interassociations among traits. Thirty‐eight associated regions had pleiotropic effects controlling more than one trait. One candidate gene, Gh_D08G2376, was speculated to control the lint percentage (LP). This GWAS is the first report using high‐resolution SNPs in upland cotton in China to comprehensively investigate agronomic traits, and it provides a fundamental resource for cotton genetic research and breeding. |
format | Online Article Text |
id | pubmed-5633765 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-56337652017-10-23 Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome‐wide association study using high‐density SNPs Huang, Cong Nie, Xinhui Shen, Chao You, Chunyuan Li, Wu Zhao, Wenxia Zhang, Xianlong Lin, Zhongxu Plant Biotechnol J Research Articles Gossypium hirsutum L. represents the largest source of textile fibre, and China is one of the largest cotton‐producing and cotton‐consuming countries in the world. To investigate the genetic architecture of the agronomic traits of upland cotton in China, a diverse and nationwide population containing 503 G. hirsutum accessions was collected for a genome‐wide association study (GWAS) on 16 agronomic traits. The accessions were planted in four places from 2012 to 2013 for phenotyping. The CottonSNP63K array and a published high‐density map based on this array were used for genotyping. The 503 G. hirsutum accessions were divided into three subpopulations based on 11 975 quantified polymorphic single‐nucleotide polymorphisms (SNPs). By comparing the genetic structure and phenotypic variation among three genetic subpopulations, seven geographic distributions and four breeding periods, we found that geographic distribution and breeding period were not the determinants of genetic structure. In addition, no obvious phenotypic differentiations were found among the three subpopulations, even though they had different genetic backgrounds. A total of 324 SNPs and 160 candidate quantitative trait loci (QTL) regions were identified as significantly associated with the 16 agronomic traits. A network was established for multieffects in QTLs and interassociations among traits. Thirty‐eight associated regions had pleiotropic effects controlling more than one trait. One candidate gene, Gh_D08G2376, was speculated to control the lint percentage (LP). This GWAS is the first report using high‐resolution SNPs in upland cotton in China to comprehensively investigate agronomic traits, and it provides a fundamental resource for cotton genetic research and breeding. John Wiley and Sons Inc. 2017-04-12 2017-11 /pmc/articles/PMC5633765/ /pubmed/28301713 http://dx.doi.org/10.1111/pbi.12722 Text en © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Huang, Cong Nie, Xinhui Shen, Chao You, Chunyuan Li, Wu Zhao, Wenxia Zhang, Xianlong Lin, Zhongxu Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome‐wide association study using high‐density SNPs |
title | Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome‐wide association study using high‐density SNPs |
title_full | Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome‐wide association study using high‐density SNPs |
title_fullStr | Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome‐wide association study using high‐density SNPs |
title_full_unstemmed | Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome‐wide association study using high‐density SNPs |
title_short | Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome‐wide association study using high‐density SNPs |
title_sort | population structure and genetic basis of the agronomic traits of upland cotton in china revealed by a genome‐wide association study using high‐density snps |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633765/ https://www.ncbi.nlm.nih.gov/pubmed/28301713 http://dx.doi.org/10.1111/pbi.12722 |
work_keys_str_mv | AT huangcong populationstructureandgeneticbasisoftheagronomictraitsofuplandcottoninchinarevealedbyagenomewideassociationstudyusinghighdensitysnps AT niexinhui populationstructureandgeneticbasisoftheagronomictraitsofuplandcottoninchinarevealedbyagenomewideassociationstudyusinghighdensitysnps AT shenchao populationstructureandgeneticbasisoftheagronomictraitsofuplandcottoninchinarevealedbyagenomewideassociationstudyusinghighdensitysnps AT youchunyuan populationstructureandgeneticbasisoftheagronomictraitsofuplandcottoninchinarevealedbyagenomewideassociationstudyusinghighdensitysnps AT liwu populationstructureandgeneticbasisoftheagronomictraitsofuplandcottoninchinarevealedbyagenomewideassociationstudyusinghighdensitysnps AT zhaowenxia populationstructureandgeneticbasisoftheagronomictraitsofuplandcottoninchinarevealedbyagenomewideassociationstudyusinghighdensitysnps AT zhangxianlong populationstructureandgeneticbasisoftheagronomictraitsofuplandcottoninchinarevealedbyagenomewideassociationstudyusinghighdensitysnps AT linzhongxu populationstructureandgeneticbasisoftheagronomictraitsofuplandcottoninchinarevealedbyagenomewideassociationstudyusinghighdensitysnps |