Cargando…
Development of A Machine Learning Algorithm to Classify Drugs Of Unknown Fetal Effect
Many drugs commonly prescribed during pregnancy lack a fetal safety recommendation – called FDA ‘category C’ drugs. This study aims to classify these drugs into harmful and safe categories using knowledge gained from chemoinformatics (i.e., pharmacological similarity with drugs of known fetal effect...
Autores principales: | Boland, Mary Regina, Polubriaginof, Fernanda, Tatonetti, Nicholas P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634437/ https://www.ncbi.nlm.nih.gov/pubmed/28993650 http://dx.doi.org/10.1038/s41598-017-12943-x |
Ejemplares similares
-
Development and validation of a classification approach for extracting severity automatically from electronic health records
por: Boland, Mary Regina, et al.
Publicado: (2015) -
Using Machine Learning to Identify Adverse Drug Effects Posing Increased Risk to Women
por: Chandak, Payal, et al.
Publicado: (2020) -
Are All Vaccines Created Equal? Using Electronic Health Records to Discover Vaccines Associated With Clinician-Coded Adverse Events
por: Boland, Mary Regina, et al.
Publicado: (2015) -
In Search of ‘Birth Month Genes’: Using Existing Data Repositories to Locate Genes Underlying Birth Month-Disease Relationships
por: Boland, Mary Regina, et al.
Publicado: (2016) -
Signal processing and machine learning algorithm to classify anaesthesia depth
por: Mosquera Dussan, Oscar, et al.
Publicado: (2023)