Cargando…

Fragmentation transitions in a coevolving nonlinear voter model

We study a coevolving nonlinear voter model describing the coupled evolution of the states of the nodes and the network topology. Nonlinearity of the interaction is measured by a parameter q. The network topology changes by rewiring links at a rate p. By analytical and numerical analysis we obtain a...

Descripción completa

Detalles Bibliográficos
Autores principales: Min, Byungjoon, Miguel, Maxi San
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634441/
https://www.ncbi.nlm.nih.gov/pubmed/28993664
http://dx.doi.org/10.1038/s41598-017-13047-2
Descripción
Sumario:We study a coevolving nonlinear voter model describing the coupled evolution of the states of the nodes and the network topology. Nonlinearity of the interaction is measured by a parameter q. The network topology changes by rewiring links at a rate p. By analytical and numerical analysis we obtain a phase diagram in p,q parameter space with three different phases: Dynamically active coexistence phase in a single component network, absorbing consensus phase in a single component network, and absorbing phase in a fragmented network. For finite systems the active phase has a lifetime that grows exponentially with system size, at variance with the similar phase for the linear voter model that has a lifetime proportional to system size. We find three transition lines that meet at the point of the fragmentation transition of the linear voter model. A first transition line corresponds to a continuous absorbing transition between the active and fragmented phases. The other two transition lines are discontinuous transitions fundamentally different from the transition of the linear voter model. One is a fragmentation transition between the consensus and fragmented phases, and the other is an absorbing transition in a single component network between the active and consensus phases.