Cargando…
Geometry Optimization with Machine Trained Topological Atoms
The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies f...
Autores principales: | Zielinski, François, Maxwell, Peter I., Fletcher, Timothy L., Davie, Stuart J., Di Pasquale, Nicodemo, Cardamone, Salvatore, Mills, Matthew J. L., Popelier, Paul L. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634454/ https://www.ncbi.nlm.nih.gov/pubmed/28993674 http://dx.doi.org/10.1038/s41598-017-12600-3 |
Ejemplares similares
-
Realistic sampling of amino acid geometries for a multipolar polarizable force field
por: Hughes, Timothy J., et al.
Publicado: (2015) -
Incorporation of local structure into kriging models for the prediction of atomistic properties in the water decamer
por: Davie, Stuart J, et al.
Publicado: (2016) -
Prediction of conformationally dependent atomic multipole moments in carbohydrates
por: Cardamone, Salvatore, et al.
Publicado: (2015) -
A fully analytical integration of properties over the 3D volume of the β sphere in topological atoms
por: Popelier, Paul L. A.
Publicado: (2018) -
Topology and geometry in polymer science
por: Whittington, Stuart, et al.
Publicado: (1998)