Cargando…
Effect of a positive Sea Surface Temperature anomaly on a Mediterranean tornadic supercell
Extreme events represent a topic of paramount importance and a challenge for modelling investigations. Due to the need of high-resolution models, the study of severe localized convective phenomena is even more critical, especially in relation to changes in forcing factors, such as sea surface temper...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634504/ https://www.ncbi.nlm.nih.gov/pubmed/28993699 http://dx.doi.org/10.1038/s41598-017-13170-0 |
Sumario: | Extreme events represent a topic of paramount importance and a challenge for modelling investigations. Due to the need of high-resolution models, the study of severe localized convective phenomena is even more critical, especially in relation to changes in forcing factors, such as sea surface temperatures (SSTs), in future climate scenarios. Here, we analyze the effect of changes in SSTs on the intensity of a tornadic supercell in the Mediterranean through modelling investigations. We show dramatic (nonlinear) changes for updraft helicity and vertical velocity, which measure the intensity of the supercell, even for variations of SST only of + /−1 K. |
---|