Cargando…

Minimum requirements for motility of a processive motor protein

Motor proteins generally have a two-way coupling between the ATP hydrolysis site, the lever movement and the binding affinity for their track, which allows them to perform efficient stepping. Here we explore the minimal requirements for directed motility based on simpler schemes in which the binding...

Descripción completa

Detalles Bibliográficos
Autores principales: Šarlah, Andreja, Vilfan, Andrej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634618/
https://www.ncbi.nlm.nih.gov/pubmed/29016643
http://dx.doi.org/10.1371/journal.pone.0185948
Descripción
Sumario:Motor proteins generally have a two-way coupling between the ATP hydrolysis site, the lever movement and the binding affinity for their track, which allows them to perform efficient stepping. Here we explore the minimal requirements for directed motility based on simpler schemes in which the binding/unbinding from the track is decoupled from the ATPase cycle. We show that a directed power stroke alone is not sufficient for motility, but combined with an asymmetry in force-induced unbinding rates it can generate stepping. The energetic efficiency of such stepping is limited to approximately 20%. We conclude that the allosteric coupling between the ATP hydrolysis and the track binding is not strictly necessary for motility, but it greatly improves its efficiency.