Cargando…
LSTrAP: efficiently combining RNA sequencing data into co-expression networks
BACKGROUND: Since experimental elucidation of gene function is often laborious, various in silico methods have been developed to predict gene function of uncharacterized genes. Since functionally related genes are often expressed in the same tissues, conditions and developmental stages (co-expressed...
Autores principales: | Proost, Sebastian, Krawczyk, Agnieszka, Mutwil, Marek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634843/ https://www.ncbi.nlm.nih.gov/pubmed/29017446 http://dx.doi.org/10.1186/s12859-017-1861-z |
Ejemplares similares
-
LSTrAP-Cloud: A User-Friendly Cloud Computing Pipeline to Infer Coexpression Networks
por: Tan, Qiao Wen, et al.
Publicado: (2020) -
LSTrAP-Crowd: prediction of novel components of bacterial ribosomes with crowd-sourced analysis of RNA sequencing data
por: Hew, Benedict, et al.
Publicado: (2020) -
CoNekT: an open-source framework for comparative genomic and transcriptomic network analyses
por: Proost, Sebastian, et al.
Publicado: (2018) -
PhytoNet: comparative co-expression network analyses across phytoplankton and land plants
por: Ferrari, Camilla, et al.
Publicado: (2018) -
TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes
por: Van Bel, Michiel, et al.
Publicado: (2013)