Cargando…
An attention-based effective neural model for drug-drug interactions extraction
BACKGROUND: Drug-drug interactions (DDIs) often bring unexpected side effects. The clinical recognition of DDIs is a crucial issue for both patient safety and healthcare cost control. However, although text-mining-based systems explore various methods to classify DDIs, the classification performance...
Autores principales: | Zheng, Wei, Lin, Hongfei, Luo, Ling, Zhao, Zhehuan, Li, Zhengguang, Zhang, Yijia, Yang, Zhihao, Wang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634850/ https://www.ncbi.nlm.nih.gov/pubmed/29017459 http://dx.doi.org/10.1186/s12859-017-1855-x |
Ejemplares similares
-
Drug drug interaction extraction from biomedical literature using syntax convolutional neural network
por: Zhao, Zhehuan, et al.
Publicado: (2016) -
Extracting Drug-Drug Interaction from the Biomedical Literature Using a Stacked Generalization-Based Approach
por: He, Linna, et al.
Publicado: (2013) -
Drug–drug interaction extraction via hierarchical RNNs on sequence and shortest dependency paths
por: Zhang, Yijia, et al.
Publicado: (2018) -
A Single Kernel-Based Approach to Extract Drug-Drug Interactions from Biomedical Literature
por: Zhang, Yijia, et al.
Publicado: (2012) -
Chemical–protein interaction extraction via contextualized word representations and multihead attention
por: Zhang, Yijia, et al.
Publicado: (2019)