Cargando…
Symmetries Constrain Dynamics in a Family of Balanced Neural Networks
We examine a family of random firing-rate neural networks in which we enforce the neurobiological constraint of Dale’s Law—each neuron makes either excitatory or inhibitory connections onto its post-synaptic targets. We find that this constrained system may be described as a perturbation from a syst...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635020/ https://www.ncbi.nlm.nih.gov/pubmed/29019105 http://dx.doi.org/10.1186/s13408-017-0052-6 |
Sumario: | We examine a family of random firing-rate neural networks in which we enforce the neurobiological constraint of Dale’s Law—each neuron makes either excitatory or inhibitory connections onto its post-synaptic targets. We find that this constrained system may be described as a perturbation from a system with nontrivial symmetries. We analyze the symmetric system using the tools of equivariant bifurcation theory and demonstrate that the symmetry-implied structures remain evident in the perturbed system. In comparison, spectral characteristics of the network coupling matrix are relatively uninformative about the behavior of the constrained system. |
---|