Cargando…
Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer's Disease: A Systematic Review
Objective: Machine learning classification has been the most important computational development in the last years to satisfy the primary need of clinicians for automatic early diagnosis and prognosis. Nowadays, Random Forest (RF) algorithm has been successfully applied for reducing high dimensional...
Autores principales: | Sarica, Alessia, Cerasa, Antonio, Quattrone, Aldo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635046/ https://www.ncbi.nlm.nih.gov/pubmed/29056906 http://dx.doi.org/10.3389/fnagi.2017.00329 |
Ejemplares similares
-
MRI Asymmetry Index of Hippocampal Subfields Increases Through the Continuum From the Mild Cognitive Impairment to the Alzheimer's Disease
por: Sarica, Alessia, et al.
Publicado: (2018) -
Neuroimaging of Essential Tremor: What is the Evidence for Cerebellar Involvement?
por: Passamonti, Luca, et al.
Publicado: (2012) -
The Neurocognitive Profile of the Cerebellum in Multiple Sclerosis
por: Sarica, Alessia, et al.
Publicado: (2015) -
Explainability of random survival forests in predicting conversion risk from mild cognitive impairment to Alzheimer’s disease
por: Sarica, Alessia, et al.
Publicado: (2023) -
Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach
por: Salvatore, Christian, et al.
Publicado: (2015)