Cargando…
Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns
We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint informati...
Autores principales: | Alvarez-Meza, Andres M., Orozco-Gutierrez, Alvaro, Castellanos-Dominguez, German |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635061/ https://www.ncbi.nlm.nih.gov/pubmed/29056897 http://dx.doi.org/10.3389/fnins.2017.00550 |
Ejemplares similares
-
Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks
por: García-Murillo, Daniel Guillermo, et al.
Publicado: (2021) -
Enhanced Data Representation by Kernel Metric Learning for Dementia Diagnosis
por: Cárdenas-Peña, David, et al.
Publicado: (2017) -
AKL-ABC: An Automatic Approximate Bayesian Computation Approach Based on Kernel Learning
por: González-Vanegas, Wilson, et al.
Publicado: (2019) -
KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
por: García-Murillo, Daniel Guillermo, et al.
Publicado: (2023) -
A Data-Driven Measure of Effective Connectivity Based on Renyi's α-Entropy
por: De La Pava Panche, Ivan, et al.
Publicado: (2019)