Cargando…

Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters

In nanoscale metrology, dissipation of the sensor limits its performance. Strong dissipation has a negative impact on sensitivity, and sensor–target interaction even causes relaxation or dephasing of the latter. The weak dissipation of nitrogen-vacancy (NV) sensors in room temperature diamond enable...

Descripción completa

Detalles Bibliográficos
Autores principales: Pfender, Matthias, Aslam, Nabeel, Sumiya, Hitoshi, Onoda, Shinobu, Neumann, Philipp, Isoya, Junichi, Meriles, Carlos A., Wrachtrup, Jörg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635067/
https://www.ncbi.nlm.nih.gov/pubmed/29018203
http://dx.doi.org/10.1038/s41467-017-00964-z
Descripción
Sumario:In nanoscale metrology, dissipation of the sensor limits its performance. Strong dissipation has a negative impact on sensitivity, and sensor–target interaction even causes relaxation or dephasing of the latter. The weak dissipation of nitrogen-vacancy (NV) sensors in room temperature diamond enables detection of individual target nuclear spins, yet limits the spectral resolution of nuclear magnetic resonance (NMR) spectroscopy to several hundred Hertz, which typically prevents molecular recognition. Here, we use the NV intrinsic nuclear spin as a nonvolatile classical memory to store NMR information, while suppressing sensor back-action on the target using controlled decoupling of sensor, memory, and target. We demonstrate memory lifetimes up to 4 min and apply measurement and decoupling protocols, which exploit such memories efficiently. Our universal NV-based sensor device records single-spin NMR spectra with 13 Hz resolution at room temperature.