Cargando…
Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means
In the article, we prove that the double inequality [Formula: see text] holds for [Formula: see text] with [Formula: see text] if and only if [Formula: see text] and [Formula: see text] , where [Formula: see text] , [Formula: see text] and [Formula: see text] denote the Neuman-Sándor, logarithmic an...
Autores principales: | Chen, Jing-Jing, Lei, Jian-Jun, Long, Bo-Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635111/ https://www.ncbi.nlm.nih.gov/pubmed/29070934 http://dx.doi.org/10.1186/s13660-017-1516-7 |
Ejemplares similares
-
Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
por: Yang, Yue-Ying, et al.
Publicado: (2017) -
Sharp bounds for the Sándor–Yang means in terms of arithmetic and contra-harmonic means
por: Xu, Hui-Zuo, et al.
Publicado: (2018) -
Several sharp inequalities about the first Seiffert mean
por: Long, Boyong, et al.
Publicado: (2018) -
Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
por: Ding, Qing, et al.
Publicado: (2017) -
Bounds for Combinations of Toader Mean and Arithmetic Mean in Terms of Centroidal Mean
por: Jiang, Wei-Dong
Publicado: (2013)