Cargando…

Existence of mild solutions for fractional nonautonomous evolution equations of Sobolev type with delay

In this paper, we deal with a class of nonlinear fractional nonautonomous evolution equations with delay by using Hilfer fractional derivative, which generalizes the famous Riemann-Liouville fractional derivative. The definition of mild solutions for the studied problem was given based on an operato...

Descripción completa

Detalles Bibliográficos
Autores principales: Gou, Haide, Li, Baolin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635133/
https://www.ncbi.nlm.nih.gov/pubmed/29070935
http://dx.doi.org/10.1186/s13660-017-1526-5
Descripción
Sumario:In this paper, we deal with a class of nonlinear fractional nonautonomous evolution equations with delay by using Hilfer fractional derivative, which generalizes the famous Riemann-Liouville fractional derivative. The definition of mild solutions for the studied problem was given based on an operator family generated by the operator pair [Formula: see text] and probability density function. Combining the techniques of fractional calculus, measure of noncompactness, and fixed point theorem with respect to k-set-contractive, we obtain a new existence result of mild solutions. The results obtained improve and extend some related conclusions on this topic. At last, we present an application that illustrates the abstract results.