Cargando…
Identification of autism spectrum disorder using deep learning and the ABIDE dataset
The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database know...
Autores principales: | Heinsfeld, Anibal Sólon, Franco, Alexandre Rosa, Craddock, R. Cameron, Buchweitz, Augusto, Meneguzzi, Felipe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635344/ https://www.ncbi.nlm.nih.gov/pubmed/29034163 http://dx.doi.org/10.1016/j.nicl.2017.08.017 |
Ejemplares similares
-
Multi-site harmonization of MRI data uncovers machine-learning discrimination capability in barely separable populations: An example from the ABIDE dataset
por: Saponaro, Sara, et al.
Publicado: (2022) -
Adjusting for allometric scaling in ABIDE I challenges subcortical volume differences in autism spectrum disorder
por: Williams, Camille Michèle, et al.
Publicado: (2020) -
Multisite functional connectivity MRI classification of autism: ABIDE results
por: Nielsen, Jared A., et al.
Publicado: (2013) -
Visual Explanation for Identification of the Brain Bases for Developmental Dyslexia on fMRI Data
por: Tomaz Da Silva, Laura, et al.
Publicado: (2021) -
Age-Dependent Statistical Changes of Involuntary Head Motion Signatures Across Autism and Controls of the ABIDE Repository
por: Caballero, Carla, et al.
Publicado: (2020)