Cargando…

Alteration to Dopaminergic Synapses Following Exposure to Perfluorooctane Sulfonate (PFOS), in Vitro and in Vivo

Our understanding of the contribution exposure to environmental toxicants has on neurological disease continues to evolve. Of these, Parkinson’s disease (PD) has been shown to have a strong environmental component to its etiopathogenesis. However, work is still needed to identify and characterize en...

Descripción completa

Detalles Bibliográficos
Autores principales: Patel, Rahul, Bradner, Joshua M., Stout, Kristen A., Caudle, William Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635798/
https://www.ncbi.nlm.nih.gov/pubmed/29083377
http://dx.doi.org/10.3390/medsci4030013
Descripción
Sumario:Our understanding of the contribution exposure to environmental toxicants has on neurological disease continues to evolve. Of these, Parkinson’s disease (PD) has been shown to have a strong environmental component to its etiopathogenesis. However, work is still needed to identify and characterize environmental chemicals that could alter the expression and function of the nigrostriatal dopamine system. Of particular interest is the neurotoxicological effect of perfluorinated compounds, such as perfluorooctane sulfonate (PFOS), which has been demonstrated to alter aspects of dopamine signaling. Using in vitro approaches, we have elaborated these initial findings to demonstrate the neurotoxicity of PFOS to the SH-SY5Y neuroblastoma cell line and dopaminergic primary cultured neurons. Using an in vivo model, we did not observe a deficit to dopaminergic terminals in the striatum of mice exposed to 10 mg/kg PFOS for 14 days. However, subsequent exposure to the selective dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) significantly reduced the expression of dopamine transporter (DAT) and tyrosine hydroxylase (TH), and resulted in an even greater reduction in DAT expression in animals previously exposed to PFOS. These findings suggest that PFOS is neurotoxic to the nigrostriatal dopamine circuit and this neurotoxicity could prime the dopamine terminal to more extensive damage following additional toxicological insults.