Cargando…
Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task
Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP) are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The n...
Autores principales: | Sanda, Pavel, Skorheim, Steven, Bazhenov, Maxim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636167/ https://www.ncbi.nlm.nih.gov/pubmed/28961245 http://dx.doi.org/10.1371/journal.pcbi.1005705 |
Ejemplares similares
-
A Spiking Network Model of Decision Making Employing Rewarded STDP
por: Skorheim, Steven, et al.
Publicado: (2014) -
Correction: Network Models of Frequency Modulated Sweep Detection
por: Skorheim, Steven, et al.
Publicado: (2015) -
Network Models of Frequency Modulated Sweep Detection
por: Skorheim, Steven, et al.
Publicado: (2014) -
Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation
por: Golden, Ryan, et al.
Publicado: (2022) -
Spike-timing-dependent plasticity rewards synchrony rather than causality
por: Anisimova, Margarita, et al.
Publicado: (2022)