Cargando…

Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution

GTP is a major regulator of multiple cellular processes, but tools for quantitative evaluation of GTP levels in live cells have not been available. Here we report characterization of genetically encoded GTP sensors, constructed by inserting cpYFP into a region of the bacterial FeoB G-protein that un...

Descripción completa

Detalles Bibliográficos
Autores principales: Bianchi-Smiraglia, Anna, Rana, Mitra S., Foley, Colleen E., Paul, Leslie M., Lipchick, Brittany C., Moparthy, Sudha, Moparthy, Kalyana, Fink, Emily E., Bagati, Archis, Hurley, Edward, Affronti, Hayley C., Bakin, Andrei V., Kandel, Eugene S., Smiraglia, Dominic J., Feltri, Maria Laura, Sousa, Rui, Nikiforov, Mikhail A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636219/
https://www.ncbi.nlm.nih.gov/pubmed/28869758
http://dx.doi.org/10.1038/nmeth.4404
_version_ 1783270406527909888
author Bianchi-Smiraglia, Anna
Rana, Mitra S.
Foley, Colleen E.
Paul, Leslie M.
Lipchick, Brittany C.
Moparthy, Sudha
Moparthy, Kalyana
Fink, Emily E.
Bagati, Archis
Hurley, Edward
Affronti, Hayley C.
Bakin, Andrei V.
Kandel, Eugene S.
Smiraglia, Dominic J.
Feltri, Maria Laura
Sousa, Rui
Nikiforov, Mikhail A.
author_facet Bianchi-Smiraglia, Anna
Rana, Mitra S.
Foley, Colleen E.
Paul, Leslie M.
Lipchick, Brittany C.
Moparthy, Sudha
Moparthy, Kalyana
Fink, Emily E.
Bagati, Archis
Hurley, Edward
Affronti, Hayley C.
Bakin, Andrei V.
Kandel, Eugene S.
Smiraglia, Dominic J.
Feltri, Maria Laura
Sousa, Rui
Nikiforov, Mikhail A.
author_sort Bianchi-Smiraglia, Anna
collection PubMed
description GTP is a major regulator of multiple cellular processes, but tools for quantitative evaluation of GTP levels in live cells have not been available. Here we report characterization of genetically encoded GTP sensors, constructed by inserting cpYFP into a region of the bacterial FeoB G-protein that undergoes a GTP-driven conformational change. GTP binding to these sensors results in a ratiometric change in their fluorescence, thereby providing an internally normalized response to changes in GTP levels while minimally perturbing those levels. Mutations introduced into FeoB to alter its affinity for GTP allowed generation of sensors with a wide dynamic range. Critically, in mammalian cells the sensors show consistent changes in fluorescence intensity ratios upon depletion or restoration of GTP pools. These sensors are suitable for detecting spatio-temporal changes in GTP levels in living cells, and for the development of high throughput screenings of molecules modulating intracellular GTP levels.
format Online
Article
Text
id pubmed-5636219
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-56362192018-03-04 Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution Bianchi-Smiraglia, Anna Rana, Mitra S. Foley, Colleen E. Paul, Leslie M. Lipchick, Brittany C. Moparthy, Sudha Moparthy, Kalyana Fink, Emily E. Bagati, Archis Hurley, Edward Affronti, Hayley C. Bakin, Andrei V. Kandel, Eugene S. Smiraglia, Dominic J. Feltri, Maria Laura Sousa, Rui Nikiforov, Mikhail A. Nat Methods Article GTP is a major regulator of multiple cellular processes, but tools for quantitative evaluation of GTP levels in live cells have not been available. Here we report characterization of genetically encoded GTP sensors, constructed by inserting cpYFP into a region of the bacterial FeoB G-protein that undergoes a GTP-driven conformational change. GTP binding to these sensors results in a ratiometric change in their fluorescence, thereby providing an internally normalized response to changes in GTP levels while minimally perturbing those levels. Mutations introduced into FeoB to alter its affinity for GTP allowed generation of sensors with a wide dynamic range. Critically, in mammalian cells the sensors show consistent changes in fluorescence intensity ratios upon depletion or restoration of GTP pools. These sensors are suitable for detecting spatio-temporal changes in GTP levels in living cells, and for the development of high throughput screenings of molecules modulating intracellular GTP levels. 2017-09-04 2017-10 /pmc/articles/PMC5636219/ /pubmed/28869758 http://dx.doi.org/10.1038/nmeth.4404 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Bianchi-Smiraglia, Anna
Rana, Mitra S.
Foley, Colleen E.
Paul, Leslie M.
Lipchick, Brittany C.
Moparthy, Sudha
Moparthy, Kalyana
Fink, Emily E.
Bagati, Archis
Hurley, Edward
Affronti, Hayley C.
Bakin, Andrei V.
Kandel, Eugene S.
Smiraglia, Dominic J.
Feltri, Maria Laura
Sousa, Rui
Nikiforov, Mikhail A.
Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution
title Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution
title_full Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution
title_fullStr Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution
title_full_unstemmed Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution
title_short Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution
title_sort internally ratiometric fluorescent sensors for evaluation of intracellular gtp levels and distribution
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636219/
https://www.ncbi.nlm.nih.gov/pubmed/28869758
http://dx.doi.org/10.1038/nmeth.4404
work_keys_str_mv AT bianchismiragliaanna internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT ranamitras internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT foleycolleene internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT paullesliem internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT lipchickbrittanyc internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT moparthysudha internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT moparthykalyana internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT finkemilye internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT bagatiarchis internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT hurleyedward internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT affrontihayleyc internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT bakinandreiv internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT kandeleugenes internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT smiragliadominicj internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT feltrimarialaura internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT sousarui internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution
AT nikiforovmikhaila internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution