Cargando…
Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution
GTP is a major regulator of multiple cellular processes, but tools for quantitative evaluation of GTP levels in live cells have not been available. Here we report characterization of genetically encoded GTP sensors, constructed by inserting cpYFP into a region of the bacterial FeoB G-protein that un...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636219/ https://www.ncbi.nlm.nih.gov/pubmed/28869758 http://dx.doi.org/10.1038/nmeth.4404 |
_version_ | 1783270406527909888 |
---|---|
author | Bianchi-Smiraglia, Anna Rana, Mitra S. Foley, Colleen E. Paul, Leslie M. Lipchick, Brittany C. Moparthy, Sudha Moparthy, Kalyana Fink, Emily E. Bagati, Archis Hurley, Edward Affronti, Hayley C. Bakin, Andrei V. Kandel, Eugene S. Smiraglia, Dominic J. Feltri, Maria Laura Sousa, Rui Nikiforov, Mikhail A. |
author_facet | Bianchi-Smiraglia, Anna Rana, Mitra S. Foley, Colleen E. Paul, Leslie M. Lipchick, Brittany C. Moparthy, Sudha Moparthy, Kalyana Fink, Emily E. Bagati, Archis Hurley, Edward Affronti, Hayley C. Bakin, Andrei V. Kandel, Eugene S. Smiraglia, Dominic J. Feltri, Maria Laura Sousa, Rui Nikiforov, Mikhail A. |
author_sort | Bianchi-Smiraglia, Anna |
collection | PubMed |
description | GTP is a major regulator of multiple cellular processes, but tools for quantitative evaluation of GTP levels in live cells have not been available. Here we report characterization of genetically encoded GTP sensors, constructed by inserting cpYFP into a region of the bacterial FeoB G-protein that undergoes a GTP-driven conformational change. GTP binding to these sensors results in a ratiometric change in their fluorescence, thereby providing an internally normalized response to changes in GTP levels while minimally perturbing those levels. Mutations introduced into FeoB to alter its affinity for GTP allowed generation of sensors with a wide dynamic range. Critically, in mammalian cells the sensors show consistent changes in fluorescence intensity ratios upon depletion or restoration of GTP pools. These sensors are suitable for detecting spatio-temporal changes in GTP levels in living cells, and for the development of high throughput screenings of molecules modulating intracellular GTP levels. |
format | Online Article Text |
id | pubmed-5636219 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-56362192018-03-04 Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution Bianchi-Smiraglia, Anna Rana, Mitra S. Foley, Colleen E. Paul, Leslie M. Lipchick, Brittany C. Moparthy, Sudha Moparthy, Kalyana Fink, Emily E. Bagati, Archis Hurley, Edward Affronti, Hayley C. Bakin, Andrei V. Kandel, Eugene S. Smiraglia, Dominic J. Feltri, Maria Laura Sousa, Rui Nikiforov, Mikhail A. Nat Methods Article GTP is a major regulator of multiple cellular processes, but tools for quantitative evaluation of GTP levels in live cells have not been available. Here we report characterization of genetically encoded GTP sensors, constructed by inserting cpYFP into a region of the bacterial FeoB G-protein that undergoes a GTP-driven conformational change. GTP binding to these sensors results in a ratiometric change in their fluorescence, thereby providing an internally normalized response to changes in GTP levels while minimally perturbing those levels. Mutations introduced into FeoB to alter its affinity for GTP allowed generation of sensors with a wide dynamic range. Critically, in mammalian cells the sensors show consistent changes in fluorescence intensity ratios upon depletion or restoration of GTP pools. These sensors are suitable for detecting spatio-temporal changes in GTP levels in living cells, and for the development of high throughput screenings of molecules modulating intracellular GTP levels. 2017-09-04 2017-10 /pmc/articles/PMC5636219/ /pubmed/28869758 http://dx.doi.org/10.1038/nmeth.4404 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Bianchi-Smiraglia, Anna Rana, Mitra S. Foley, Colleen E. Paul, Leslie M. Lipchick, Brittany C. Moparthy, Sudha Moparthy, Kalyana Fink, Emily E. Bagati, Archis Hurley, Edward Affronti, Hayley C. Bakin, Andrei V. Kandel, Eugene S. Smiraglia, Dominic J. Feltri, Maria Laura Sousa, Rui Nikiforov, Mikhail A. Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution |
title | Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution |
title_full | Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution |
title_fullStr | Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution |
title_full_unstemmed | Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution |
title_short | Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution |
title_sort | internally ratiometric fluorescent sensors for evaluation of intracellular gtp levels and distribution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636219/ https://www.ncbi.nlm.nih.gov/pubmed/28869758 http://dx.doi.org/10.1038/nmeth.4404 |
work_keys_str_mv | AT bianchismiragliaanna internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT ranamitras internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT foleycolleene internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT paullesliem internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT lipchickbrittanyc internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT moparthysudha internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT moparthykalyana internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT finkemilye internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT bagatiarchis internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT hurleyedward internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT affrontihayleyc internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT bakinandreiv internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT kandeleugenes internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT smiragliadominicj internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT feltrimarialaura internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT sousarui internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution AT nikiforovmikhaila internallyratiometricfluorescentsensorsforevaluationofintracellulargtplevelsanddistribution |