Cargando…
Instrumental variables as bias amplifiers with general outcome and confounding
Drawing causal inference with observational studies is the central pillar of many disciplines. One sufficient condition for identifying the causal effect is that the treatment-outcome relationship is unconfounded conditional on the observed covariates. It is often believed that the more covariates w...
Autores principales: | Ding, P., Vanderweele, T.J., Robins, J. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636691/ https://www.ncbi.nlm.nih.gov/pubmed/29033459 http://dx.doi.org/10.1093/biomet/asx009 |
Ejemplares similares
-
Sharp sensitivity bounds for mediation under unmeasured mediator-outcome
confounding
por: Ding, Peng, et al.
Publicado: (2016) -
Principles of confounder selection
por: VanderWeele, Tyler J.
Publicado: (2019) -
Misspecification of confounder-exposure and confounder-outcome associations leads to bias in effect estimates
por: Schuster, Noah A., et al.
Publicado: (2023) -
Sensitivity Analysis for Unmeasured Confounding in Meta-Analyses
por: Mathur, Maya B., et al.
Publicado: (2019) -
Assessing bias: the importance of considering confounding
por: Skelly, Andrea C., et al.
Publicado: (2012)