Cargando…
Bypassing the Kohn-Sham equations with machine learning
Last year, at least 30,000 scientific papers used the Kohn–Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn–S...
Autores principales: | Brockherde, Felix, Vogt, Leslie, Li, Li, Tuckerman, Mark E., Burke, Kieron, Müller, Klaus-Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636838/ https://www.ncbi.nlm.nih.gov/pubmed/29021555 http://dx.doi.org/10.1038/s41467-017-00839-3 |
Ejemplares similares
-
Machine learning the Hohenberg-Kohn map for molecular excited states
por: Bai, Yuanming, et al.
Publicado: (2022) -
Quantum chemical accuracy from density functional approximations via machine learning
por: Bogojeski, Mihail, et al.
Publicado: (2020) -
The Nature of Nonclassical Carbonyl Ligands Explained by Kohn–Sham Molecular Orbital Theory
por: van der Lubbe, Stephanie C. C., et al.
Publicado: (2020) -
Rapidly predicting Kohn–Sham total energy using data-centric AI
por: Kurban, Hasan, et al.
Publicado: (2022) -
Nature of the Ru−NO Coordination Bond: Kohn–Sham Molecular Orbital and Energy Decomposition Analysis
por: Orenha, Renato P., et al.
Publicado: (2017)