Cargando…
Forecasting the onset and course of mental illness with Twitter data
We developed computational models to predict the emergence of depression and Post-Traumatic Stress Disorder in Twitter users. Twitter data and details of depression history were collected from 204 individuals (105 depressed, 99 healthy). We extracted predictive features measuring affect, linguistic...
Autores principales: | Reece, Andrew G., Reagan, Andrew J., Lix, Katharina L. M., Dodds, Peter Sheridan, Danforth, Christopher M., Langer, Ellen J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636873/ https://www.ncbi.nlm.nih.gov/pubmed/29021528 http://dx.doi.org/10.1038/s41598-017-12961-9 |
Ejemplares similares
-
Climate Change Sentiment on Twitter: An Unsolicited Public Opinion Poll
por: Cody, Emily M., et al.
Publicado: (2015) -
Storywrangler: A massive exploratorium for sociolinguistic, cultural, socioeconomic, and political timelines using Twitter
por: Alshaabi, Thayer, et al.
Publicado: (2021) -
Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation
por: Reagan, Andrew J., et al.
Publicado: (2016) -
Tracking Climate Change through the Spatiotemporal Dynamics of the Teletherms, the Statistically Hottest and Coldest Days of the Year
por: Dodds, Peter Sheridan, et al.
Publicado: (2016) -
Divergent discourse between protests and counter-protests: #BlackLivesMatter and #AllLivesMatter
por: Gallagher, Ryan J., et al.
Publicado: (2018)