Cargando…

Relationships between structure, in vivo function and long-range axonal target of cortical pyramidal tract neurons

Pyramidal tract neurons (PTs) represent the major output cell type of the neocortex. To investigate principles of how the results of cortical processing are broadcasted to different downstream targets thus requires experimental approaches, which provide access to the in vivo electrophysiology of PTs...

Descripción completa

Detalles Bibliográficos
Autores principales: Rojas-Piloni, Gerardo, Guest, Jason M., Egger, Robert, Johnson, Andrew S., Sakmann, Bert, Oberlaender, Marcel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636900/
https://www.ncbi.nlm.nih.gov/pubmed/29021587
http://dx.doi.org/10.1038/s41467-017-00971-0
Descripción
Sumario:Pyramidal tract neurons (PTs) represent the major output cell type of the neocortex. To investigate principles of how the results of cortical processing are broadcasted to different downstream targets thus requires experimental approaches, which provide access to the in vivo electrophysiology of PTs, whose subcortical target regions are identified. On the example of rat barrel cortex (vS1), we illustrate that retrograde tracer injections into multiple subcortical structures allow identifying the long-range axonal targets of individual in vivo recorded PTs. Here we report that soma depth and dendritic path lengths within each cortical layer of vS1, as well as spiking patterns during both periods of ongoing activity and during sensory stimulation, reflect the respective subcortical target regions of PTs. We show that these cellular properties result in a structure–function parameter space that allows predicting a PT’s subcortical target region, without the need to inject multiple retrograde tracers.