Cargando…
Machine learning molecular dynamics for the simulation of infrared spectra
Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects – typically neglected b...
Autores principales: | Gastegger, Michael, Behler, Jörg, Marquetand, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636952/ https://www.ncbi.nlm.nih.gov/pubmed/29147518 http://dx.doi.org/10.1039/c7sc02267k |
Ejemplares similares
-
Machine learning enables long time scale molecular photodynamics simulations
por: Westermayr, Julia, et al.
Publicado: (2019) -
Machine learning of solvent effects on molecular spectra and reactions
por: Gastegger, Michael, et al.
Publicado: (2021) -
Combining SchNet and SHARC: The SchNarc Machine Learning
Approach for Excited-State Dynamics
por: Westermayr, Julia, et al.
Publicado: (2020) -
Simulated and Experimental Time-Resolved Photoelectron Spectra of the Intersystem Crossing Dynamics in 2-Thiouracil
por: Mai, Sebastian, et al.
Publicado: (2018) -
Ultrafast intersystem crossing dynamics in uracil unravelled by ab initio molecular dynamics
por: Richter, Martin, et al.
Publicado: (2014)