Cargando…

Emergent biomarker derived from next-generation sequencing to identify pain patients requiring uncommonly high opioid doses

Next-generation sequencing (NGS) provides unrestricted access to the genome, but it produces ‘big data’ exceeding in amount and complexity the classical analytical approaches. We introduce a bioinformatics-based classifying biomarker that uses emergent properties in genetics to separate pain patient...

Descripción completa

Detalles Bibliográficos
Autores principales: Kringel, D, Ultsch, A, Zimmermann, M, Jansen, J-P, Ilias, W, Freynhagen, R, Griessinger, N, Kopf, A, Stein, C, Doehring, A, Resch, E, Lötsch, J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637232/
https://www.ncbi.nlm.nih.gov/pubmed/27139154
http://dx.doi.org/10.1038/tpj.2016.28
_version_ 1783270587974549504
author Kringel, D
Ultsch, A
Zimmermann, M
Jansen, J-P
Ilias, W
Freynhagen, R
Griessinger, N
Kopf, A
Stein, C
Doehring, A
Resch, E
Lötsch, J
author_facet Kringel, D
Ultsch, A
Zimmermann, M
Jansen, J-P
Ilias, W
Freynhagen, R
Griessinger, N
Kopf, A
Stein, C
Doehring, A
Resch, E
Lötsch, J
author_sort Kringel, D
collection PubMed
description Next-generation sequencing (NGS) provides unrestricted access to the genome, but it produces ‘big data’ exceeding in amount and complexity the classical analytical approaches. We introduce a bioinformatics-based classifying biomarker that uses emergent properties in genetics to separate pain patients requiring extremely high opioid doses from controls. Following precisely calculated selection of the 34 most informative markers in the OPRM1, OPRK1, OPRD1 and SIGMAR1 genes, pattern of genotypes belonging to either patient group could be derived using a k-nearest neighbor (kNN) classifier that provided a diagnostic accuracy of 80.6±4%. This outperformed alternative classifiers such as reportedly functional opioid receptor gene variants or complex biomarkers obtained via multiple regression or decision tree analysis. The accumulation of several genetic variants with only minor functional influences may result in a qualitative consequence affecting complex phenotypes, pointing at emergent properties in genetics.
format Online
Article
Text
id pubmed-5637232
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-56372322017-12-02 Emergent biomarker derived from next-generation sequencing to identify pain patients requiring uncommonly high opioid doses Kringel, D Ultsch, A Zimmermann, M Jansen, J-P Ilias, W Freynhagen, R Griessinger, N Kopf, A Stein, C Doehring, A Resch, E Lötsch, J Pharmacogenomics J Original Article Next-generation sequencing (NGS) provides unrestricted access to the genome, but it produces ‘big data’ exceeding in amount and complexity the classical analytical approaches. We introduce a bioinformatics-based classifying biomarker that uses emergent properties in genetics to separate pain patients requiring extremely high opioid doses from controls. Following precisely calculated selection of the 34 most informative markers in the OPRM1, OPRK1, OPRD1 and SIGMAR1 genes, pattern of genotypes belonging to either patient group could be derived using a k-nearest neighbor (kNN) classifier that provided a diagnostic accuracy of 80.6±4%. This outperformed alternative classifiers such as reportedly functional opioid receptor gene variants or complex biomarkers obtained via multiple regression or decision tree analysis. The accumulation of several genetic variants with only minor functional influences may result in a qualitative consequence affecting complex phenotypes, pointing at emergent properties in genetics. Nature Publishing Group 2017-10 2016-05-03 /pmc/articles/PMC5637232/ /pubmed/27139154 http://dx.doi.org/10.1038/tpj.2016.28 Text en Copyright © 2017 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/
spellingShingle Original Article
Kringel, D
Ultsch, A
Zimmermann, M
Jansen, J-P
Ilias, W
Freynhagen, R
Griessinger, N
Kopf, A
Stein, C
Doehring, A
Resch, E
Lötsch, J
Emergent biomarker derived from next-generation sequencing to identify pain patients requiring uncommonly high opioid doses
title Emergent biomarker derived from next-generation sequencing to identify pain patients requiring uncommonly high opioid doses
title_full Emergent biomarker derived from next-generation sequencing to identify pain patients requiring uncommonly high opioid doses
title_fullStr Emergent biomarker derived from next-generation sequencing to identify pain patients requiring uncommonly high opioid doses
title_full_unstemmed Emergent biomarker derived from next-generation sequencing to identify pain patients requiring uncommonly high opioid doses
title_short Emergent biomarker derived from next-generation sequencing to identify pain patients requiring uncommonly high opioid doses
title_sort emergent biomarker derived from next-generation sequencing to identify pain patients requiring uncommonly high opioid doses
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637232/
https://www.ncbi.nlm.nih.gov/pubmed/27139154
http://dx.doi.org/10.1038/tpj.2016.28
work_keys_str_mv AT kringeld emergentbiomarkerderivedfromnextgenerationsequencingtoidentifypainpatientsrequiringuncommonlyhighopioiddoses
AT ultscha emergentbiomarkerderivedfromnextgenerationsequencingtoidentifypainpatientsrequiringuncommonlyhighopioiddoses
AT zimmermannm emergentbiomarkerderivedfromnextgenerationsequencingtoidentifypainpatientsrequiringuncommonlyhighopioiddoses
AT jansenjp emergentbiomarkerderivedfromnextgenerationsequencingtoidentifypainpatientsrequiringuncommonlyhighopioiddoses
AT iliasw emergentbiomarkerderivedfromnextgenerationsequencingtoidentifypainpatientsrequiringuncommonlyhighopioiddoses
AT freynhagenr emergentbiomarkerderivedfromnextgenerationsequencingtoidentifypainpatientsrequiringuncommonlyhighopioiddoses
AT griessingern emergentbiomarkerderivedfromnextgenerationsequencingtoidentifypainpatientsrequiringuncommonlyhighopioiddoses
AT kopfa emergentbiomarkerderivedfromnextgenerationsequencingtoidentifypainpatientsrequiringuncommonlyhighopioiddoses
AT steinc emergentbiomarkerderivedfromnextgenerationsequencingtoidentifypainpatientsrequiringuncommonlyhighopioiddoses
AT doehringa emergentbiomarkerderivedfromnextgenerationsequencingtoidentifypainpatientsrequiringuncommonlyhighopioiddoses
AT resche emergentbiomarkerderivedfromnextgenerationsequencingtoidentifypainpatientsrequiringuncommonlyhighopioiddoses
AT lotschj emergentbiomarkerderivedfromnextgenerationsequencingtoidentifypainpatientsrequiringuncommonlyhighopioiddoses