Cargando…
Comparison of oropharyngeal leak pressure of air-Q™, i-gel™, and laryngeal mask airway supreme™ in adult patients during general anesthesia: A randomized controlled trial
STUDY OBJECTIVE: Various randomized controlled trials and a meta-analysis have compared i-gel™ and laryngeal mask airway Supreme™ (LMA-S™) in adult patients and found that both the devices provided equivalent oropharyngeal leak pressure (OLP). However, no randomized controlled trial has compared air...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637413/ https://www.ncbi.nlm.nih.gov/pubmed/29033717 http://dx.doi.org/10.4103/sja.SJA_149_17 |
Sumario: | STUDY OBJECTIVE: Various randomized controlled trials and a meta-analysis have compared i-gel™ and laryngeal mask airway Supreme™ (LMA-S™) in adult patients and found that both the devices provided equivalent oropharyngeal leak pressure (OLP). However, no randomized controlled trial has compared air-Q™ with i-gel™ and LMA-S™ in adult patient. Hence, we designed this study to compare air-Q™ with LMA-S™ and i-gel™ in adult patients. MATERIALS AND METHODS: A total of 75 adult patients of the American Society of Anesthesiologists physical status I/II of both sexes, between 18 and 60 years, were included in this prospective randomized controlled trial conducted in a tertiary care center. Randomization of patients was done in three equal groups according to the insertion of supraglottic airway device by a computer-generated random number sequence: group air-Q™ (n = 25), group i-gel™ (n = 25), and group LMA-S™ (n = 25). Primary outcome of this study was OLP. We also recorded time for successful placement of device, ease of device insertion, number of attempts to insert device, and ease of gastric tube insertion along with postoperative complications. RESULTS: The mean ± standard deviation OLP of air-Q™, i-gel™, and LMA-S™ was 26.13 ± 4.957 cm, 23.75 ± 5.439 cm, and 24.80 ± 4.78 cm H(2)O (P = 0.279). The first insertion success rate for air-Q™, i-gel™, and LMA-S™ was 80%, 76%, and 92%, respectively (P = 0.353). The insertion time of air-Q™, i-gel™, and LMA-S™ was 20.6 ± 4.4, 14.8 ± 5.4, and 15.2 ± 4.7 s, respectively (P = 0.000). Time taken for air-Q™ insertion was significantly higher than time taken for i-gel™ (mean difference 5.8 s, P < 0.0001) and LMA-S™ (mean difference 5.4 s, P = 0.0001) insertion. Postoperative complications were similar with all three devices. CONCLUSIONS: We concluded that air-Q™, i-gel™, and LMA-S™ were equally efficacious in terms of routine airway management in adult patients with normal airway anatomy. |
---|