Cargando…
Carbon–Halogen Bond Activation by Selenium‐Based Chalcogen Bonding
Chalcogen bonding is a little explored noncovalent interaction similar to halogen bonding. This manuscript describes the first application of selenium‐based chalcogen bond donors as Lewis acids in organic synthesis. To this end, the solvolysis of benzhydryl bromide served as a halide abstraction ben...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638094/ https://www.ncbi.nlm.nih.gov/pubmed/28605080 http://dx.doi.org/10.1002/anie.201704816 |
Sumario: | Chalcogen bonding is a little explored noncovalent interaction similar to halogen bonding. This manuscript describes the first application of selenium‐based chalcogen bond donors as Lewis acids in organic synthesis. To this end, the solvolysis of benzhydryl bromide served as a halide abstraction benchmark reaction. Chalcogen bond donors based on a bis(benzimidazolium) core provided rate accelerations relative to the background reactivity by a factor of 20–30. Several comparative experiments provide clear indications that the observed activation is due to chalcogen bonding. The performance of the chalcogen bond donors is superior to that of a related brominated halogen bond donor. |
---|