Cargando…

MiSynPat: An integrated knowledge base linking clinical, genetic, and structural data for disease‐causing mutations in human mitochondrial aminoacyl‐tRNA synthetases

Numerous mutations in each of the mitochondrial aminoacyl‐tRNA synthetases (aaRSs) have been implicated in human diseases. The mutations are autosomal and recessive and lead mainly to neurological disorders, although with pleiotropic effects. The processes and interactions that drive the etiology of...

Descripción completa

Detalles Bibliográficos
Autores principales: Moulinier, Luc, Ripp, Raymond, Castillo, Gaston, Poch, Olivier, Sissler, Marie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638098/
https://www.ncbi.nlm.nih.gov/pubmed/28608363
http://dx.doi.org/10.1002/humu.23277
Descripción
Sumario:Numerous mutations in each of the mitochondrial aminoacyl‐tRNA synthetases (aaRSs) have been implicated in human diseases. The mutations are autosomal and recessive and lead mainly to neurological disorders, although with pleiotropic effects. The processes and interactions that drive the etiology of the disorders associated with mitochondrial aaRSs (mt‐aaRSs) are far from understood. The complexity of the clinical, genetic, and structural data requires concerted, interdisciplinary efforts to understand the molecular biology of these disorders. Toward this goal, we designed MiSynPat, a comprehensive knowledge base together with an ergonomic Web server designed to organize and access all pertinent information (sequences, multiple sequence alignments, structures, disease descriptions, mutation characteristics, original literature) on the disease‐linked human mt‐aaRSs. With MiSynPat, a user can also evaluate the impact of a possible mutation on sequence‐conservation‐structure in order to foster the links between basic and clinical researchers and to facilitate future diagnosis. The proposed integrated view, coupled with research on disease‐related mt‐aaRSs, will help to reveal new functions for these enzymes and to open new vistas in the molecular biology of the cell. The purpose of MiSynPat, freely available at http://misynpat.org, is to constitute a reference and a converging resource for scientists and clinicians.