Cargando…
Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases
Discovering genetic mechanisms driving complex diseases is a hard problem. Existing methods often lack power to identify the set of responsible genes. Protein-protein interaction networks have been shown to boost power when detecting gene-disease associations. We introduce a Bayesian framework, Conf...
Autores principales: | Mezlini, Aziz M., Goldenberg, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638204/ https://www.ncbi.nlm.nih.gov/pubmed/29023450 http://dx.doi.org/10.1371/journal.pcbi.1005580 |
Ejemplares similares
-
Probabilistic graphical models : principles and techniques /
por: Koller, Daphne
Publicado: (2009) -
Advances in probabilistic graphical models
por: Lucas, Peter, et al.
Publicado: (2007) -
Boosting Probabilistic Graphical Model Inference by Incorporating Prior Knowledge from Multiple Sources
por: Praveen, Paurush, et al.
Publicado: (2013) -
Probabilistic graphic models applied to identification of diseases
por: Sato, Renato Cesar, et al.
Publicado: (2015) -
Probabilistic graphical models: principles and techniques
por: Koller, Daphne, et al.
Publicado: (2009)