Cargando…
Comparison of six electromyography acquisition setups on hand movement classification tasks
Hand prostheses controlled by surface electromyography are promising due to the non-invasive approach and the control capabilities offered by machine learning. Nevertheless, dexterous prostheses are still scarcely spread due to control difficulties, low robustness and often prohibitive costs. Severa...
Autores principales: | Pizzolato, Stefano, Tagliapietra, Luca, Cognolato, Matteo, Reggiani, Monica, Müller, Henning, Atzori, Manfredo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638457/ https://www.ncbi.nlm.nih.gov/pubmed/29023548 http://dx.doi.org/10.1371/journal.pone.0186132 |
Ejemplares similares
-
Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands
por: Atzori, Manfredo, et al.
Publicado: (2016) -
Improving Robotic Hand Prosthesis Control With Eye Tracking and Computer Vision: A Multimodal Approach Based on the Visuomotor Behavior of Grasping
por: Cognolato, Matteo, et al.
Publicado: (2022) -
A quantitative taxonomy of human hand grasps
por: Stival, Francesca, et al.
Publicado: (2019) -
Head-mounted eye gaze tracking devices: An overview of modern devices
and recent advances
por: Cognolato, Matteo, et al.
Publicado: (2018) -
A large calibrated database of hand movements and grasps kinematics
por: Jarque-Bou, Néstor J., et al.
Publicado: (2020)