Cargando…

Ginsenoside Rb1 prevents homocysteine-induced EPC dysfunction via VEGF/p38MAPK and SDF-1/CXCR4 activation

Hyperhomocystinemia (HHcy) is known as an independent risk factor for cardiovascular disease. Our previous study showed that ginsenoside Rb1, the major active constituent of ginseng, prevents homocysteine (Hcy)-induced endothelial damage. However, the role of ginsenoside Rb1 in Hcy-induced dysfuncti...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan, Tao-Hua, Xu, Dan-Ping, Huang, Man-Ting, Song, Ju-Xian, Wu, Huan-Lin, Li, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638839/
https://www.ncbi.nlm.nih.gov/pubmed/29026158
http://dx.doi.org/10.1038/s41598-017-13436-7
Descripción
Sumario:Hyperhomocystinemia (HHcy) is known as an independent risk factor for cardiovascular disease. Our previous study showed that ginsenoside Rb1, the major active constituent of ginseng, prevents homocysteine (Hcy)-induced endothelial damage. However, the role of ginsenoside Rb1 in Hcy-induced dysfunction in endothelial progenitor cells (EPCs) remains unknown. In the study, we found that ginsenoside Rb1 reversed the Hcy-induced impairment of adhesive and migratory ability in EPCs which were significantly abolished by CXCR4 antagonist AMD3100 and VEGFR2 inhibitor SU5416. Ginsenoside Rb1 significantly reversed Hcy-induced SDF-1 reduction in the supernatant and in the serum. Ginsenoside Rb1 reversed downregulation of SDF-1 and VEGFR2 protein expression, inhibition of p38MAPK phosphorylation induced by Hcy. Re-endothelialization in balloon-injured carotid arteries significantly increased with EPCs transplant, and was even better with Rb1 treatment. This effect was significantly abolished by AMD3100. AMD3100 also decreased the number of CM-DiI labeled EPCs in injured arteries. Here we show for the first time that Rb1 prevents Hcy-induced EPC dysfunction via VEGF/p38MAPK and SDF-1/CXCR4 activation. These findings demonstrate a novel mechanism of the action of Rb1 that may have value in prevention of HHcy associated cardiovascular disease.