Cargando…
A new semi-supervised learning model combined with Cox and SP-AFT models in cancer survival analysis
Gene selection is an attractive and important task in cancer survival analysis. Most existing supervised learning methods can only use the labeled biological data, while the censored data (weakly labeled data) far more than the labeled data are ignored in model building. Trying to utilize such infor...
Autores principales: | Chai, Hua, Li, Zi-na, Meng, De-yu, Xia, Liang-yong, Liang, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638936/ https://www.ncbi.nlm.nih.gov/pubmed/29026100 http://dx.doi.org/10.1038/s41598-017-13133-5 |
Ejemplares similares
-
Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with L(1/2) regularization
por: Liang, Yong, et al.
Publicado: (2016) -
A novel logistic regression model combining semi-supervised learning and active learning for disease classification
por: Chai, Hua, et al.
Publicado: (2018) -
Controls and the AFT Tool
por: Roderick, C, et al.
Publicado: (2019) -
Buckley-James Estimator of AFT Models with Auxiliary Covariates
por: Granville, Kevin, et al.
Publicado: (2014) -
Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer
por: Al-Azzam, Nosayba, et al.
Publicado: (2021)