Cargando…
Systematic integration of biomedical knowledge prioritizes drugs for repurposing
The ability to computationally predict whether a compound treats a disease would improve the economy and success rate of drug approval. This study describes Project Rephetio to systematically model drug efficacy based on 755 existing treatments. First, we constructed Hetionet (neo4j.het.io), an inte...
Autores principales: | Himmelstein, Daniel Scott, Lizee, Antoine, Hessler, Christine, Brueggeman, Leo, Chen, Sabrina L, Hadley, Dexter, Green, Ari, Khankhanian, Pouya, Baranzini, Sergio E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640425/ https://www.ncbi.nlm.nih.gov/pubmed/28936969 http://dx.doi.org/10.7554/eLife.26726 |
Ejemplares similares
-
Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes
por: Himmelstein, Daniel S., et al.
Publicado: (2015) -
Haplotype-based approach to known MS-associated regions increases the amount of explained risk
por: Khankhanian, Pouya, et al.
Publicado: (2015) -
Genetic contribution to multiple sclerosis risk among Ashkenazi Jews
por: Khankhanian, Pouya, et al.
Publicado: (2015) -
iCTNet: A Cytoscape plugin to produce and analyze integrative complex traits networks
por: Wang, Lili, et al.
Publicado: (2011) -
SNP imputation bias reduces effect size determination
por: Khankhanian, Pouya, et al.
Publicado: (2015)