Cargando…

Maternal consumption of fish oil programs reduced adiposity in broiler chicks

Maternal intake of eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic acid (22:6 n-3) has been associated with reduced adiposity in children, suggesting the possibility to program adipose development through dietary fatty acids before birth. This study determined if enriching the maternal die...

Descripción completa

Detalles Bibliográficos
Autores principales: Beckford, Ronique C., Howard, Sarah J., Das, Suchita, Farmer, Abigail T., Campagna, Shawn R., Yu, Jiali, Hettich, Robert L., Wilson, Jeanna L., Voy, Brynn H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640664/
https://www.ncbi.nlm.nih.gov/pubmed/29030616
http://dx.doi.org/10.1038/s41598-017-13519-5
Descripción
Sumario:Maternal intake of eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic acid (22:6 n-3) has been associated with reduced adiposity in children, suggesting the possibility to program adipose development through dietary fatty acids before birth. This study determined if enriching the maternal diet in fish oil, the primary source of EPA and DHA, affected adipose development in offspring. Broiler chickens were used because they are obesity-prone, and because fatty acids provided to the embryo can be manipulated through the hen diet. Hens were fed diets supplemented (2.8% wt:wt) with corn oil (CO; n-6) or fish oil (FO; n-3) for 28 d. Chicks from both maternal diet groups were fed the same diet after hatch. Maternal FO consumption enriched chick adipose tissue in EPA and DHA and reduced adiposity by promoting more, but smaller, adipocytes. This adipocyte profile was paralleled by lower expression of the adipogenic regulator PPARG and its co-activator PPARGC1B, and elevated expression of LPL. Proteomics identified 95 differentially abundant proteins between FO and CO adipose tissue, including components of glucose metabolism, lipid droplet trafficking, and cytoskeletal organization. These results demonstrate that the maternal dietary fatty acid profile programs offspring adipose development.