Cargando…
Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments
Recent advances in Deep convolutional Neural Networks (DNNs) have enabled unprecedentedly accurate computational models of brain representations, and present an exciting opportunity to model diverse cognitive functions. State-of-the-art DNNs achieve human-level performance on object categorisation,...
Autores principales: | Jozwik, Kamila M., Kriegeskorte, Nikolaus, Storrs, Katherine R., Mur, Marieke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640771/ https://www.ncbi.nlm.nih.gov/pubmed/29062291 http://dx.doi.org/10.3389/fpsyg.2017.01726 |
Ejemplares similares
-
Visual features as stepping stones toward semantics: Explaining object similarity in IT and perception with non-negative least squares
por: Jozwik, Kamila M., et al.
Publicado: (2016) -
Human Object-Similarity Judgments Reflect and Transcend the Primate-IT Object Representation
por: Mur, Marieke, et al.
Publicado: (2013) -
Face dissimilarity judgments are predicted by representational distance in morphable and image-computable models
por: Jozwik, Kamila M., et al.
Publicado: (2022) -
The spatiotemporal neural dynamics underlying perceived similarity for real-world objects
por: Cichy, Radoslaw M., et al.
Publicado: (2019) -
Representational Similarity Analysis – Connecting the Branches of Systems Neuroscience
por: Kriegeskorte, Nikolaus, et al.
Publicado: (2008)