Cargando…
Preprocessing of (18)F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution
(18)F-DMFP-PET is an emerging neuroimaging modality used to diagnose Parkinson's disease (PD) that allows us to examine postsynaptic dopamine D(2/3) receptors. Like other neuroimaging modalities used for PD diagnosis, most of the total intensity of (18)F-DMFP-PET images is concentrated in the s...
Autores principales: | Segovia, Fermín, Górriz, Juan M., Ramírez, Javier, Martínez-Murcia, Francisco J., Salas-Gonzalez, Diego |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640782/ https://www.ncbi.nlm.nih.gov/pubmed/29062277 http://dx.doi.org/10.3389/fnagi.2017.00326 |
Ejemplares similares
-
Multivariate Analysis of (18)F-DMFP PET Data to Assist the Diagnosis of Parkinsonism
por: Segovia, Fermín, et al.
Publicado: (2017) -
A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI
por: Castillo-Barnes, Diego, et al.
Publicado: (2017) -
Approximating Hidden Gaussian Markov Random Fields
por: Rue, H, et al.
Publicado: (2003) -
Using CT Data to Improve the Quantitative Analysis of (18)F-FBB PET Neuroimages
por: Segovia, Fermín, et al.
Publicado: (2018) -
Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes
por: Nakamura, Tomoaki, et al.
Publicado: (2017)